83 research outputs found

    Backbending and GammaGamma-Vibrations

    Full text link
    We propose that the backbending phenomenon can be explained as a result of the disappearance of collective gammagamma-vibrational mode in the rotating frame. Using a cranking+random phase approximation approach for the modified Nilsson potential + monopole pairing forces, we show that this mechanism is responsible for the backbending in 156^{156}Dy, 158^{158}Er and obtain a good agreement between theoretical and experimental results.Comment: 5 pages, 4 figures, published versio

    RESEARCH THERMOTECHNIC ANALYSIS OF CRADLE-CONVEYOR DRYER

    Get PDF
    In the given work, results numerical modeling for research and an estimation of thermal productivity of drying chamber combined solar-fuel drying installation which is based with cradle-conveyor, heated up by direct receipt of sunlight and an additional source of heat are presented. All calculations have been spent in cases of an “empty” condition drying chamber and “non-working” mode of infrared lamps.Into a database of the given program are entered all thermophysical and physical properties of materials and the substances used in solar dry kiln. Absorbing ability and factor of radiation of a surface of a wall solar dry kiln make chambers (case) 0.90 and 1.0 accordingly where it is made of the processed stainless steel having following properties: the density of 7900 kg/m3 , a specific thermal capacity of 500 J/(kg∙ ̊С), factor of heat conductivity of 16.3 W/(m ̊С), and as the entry condition its temperature has been chosen, equal ambient temperature. In quality translucent coverings have been used polycarbonate sheets having following properties: density of 1200.00 kg/m3 , a specific thermal capacity of 1200 J/(kg∙ ̊С), it has been specified that in them heat conductivity is homogeneous also their factor of heat conductivity of 0.20 W/(m ̊С). For a thermal protection of a ground part drying chambers the polystyrene having following properties has been used: Density of 1075.0 kg/m , a thermal capacity of 350 J/(kg ̊С), factor of heat conductivity of 0.082 W/(m ̊С). The heat-carrier in given solar dry kiln is air having the following physical and thermophysical property: relations of specific thermal capacities (Cp/Cv) 1.399, and molar weight of 0.0290 kg/mol.In the given work, results numerical modeling for research and an estimation of thermal productivity of drying chamber combined solar-fuel drying installation which is based with cradle-conveyor, heated up by direct receipt of sunlight and an additional source of heat are presented. All calculations have been spent in cases of an “empty” condition drying chamber and “non-working” mode of infrared lamps.Into a database of the given program are entered all thermophysical and physical properties of materials and the substances used in solar dry kiln. Absorbing ability and factor of radiation of a surface of a wall solar dry kiln make chambers (case) 0.90 and 1.0 accordingly where it is made of the processed stainless steel having following properties: the density of 7900 kg/m3 , a specific thermal capacity of 500 J/(kg∙ ̊С), factor of heat conductivity of 16.3 W/(m ̊С), and as the entry condition its temperature has been chosen, equal ambient temperature. In quality translucent coverings have been used polycarbonate sheets having following properties: density of 1200.00 kg/m3 , a specific thermal capacity of 1200 J/(kg∙ ̊С), it has been specified that in them heat conductivity is homogeneous also their factor of heat conductivity of 0.20 W/(m ̊С). For a thermal protection of a ground part drying chambers the polystyrene having following properties has been used: Density of 1075.0 kg/m , a thermal capacity of 350 J/(kg ̊С), factor of heat conductivity of 0.082 W/(m ̊С). The heat-carrier in given solar dry kiln is air having the following physical and thermophysical property: relations of specific thermal capacities (Cp/Cv) 1.399, and molar weight of 0.0290 kg/mol

    Nonequilibrium spin distribution in single-electron transistor

    Full text link
    Single-electron transistor with ferromagnetic outer electrodes and nonmagnetic island is studied theoretically. Nonequilibrium electron spin distribution in the island is caused by tunneling current. The dependencies of the magnetoresistance ratio δ\delta on the bias and gate voltages show the dips which are directly related to the induced separation of Fermi levels for electrons with different spins. Inside a dip δ\delta can become negative.Comment: 11 pages, 2 eps figure

    Effects of boundary conditions on magnetization switching in kinetic Ising models of nanoscale ferromagnets

    Full text link
    Magnetization switching in highly anisotropic single-domain ferromagnets has been previously shown to be qualitatively described by the droplet theory of metastable decay and simulations of two-dimensional kinetic Ising systems with periodic boundary conditions. In this article we consider the effects of boundary conditions on the switching phenomena. A rich range of behaviors is predicted by droplet theory: the specific mechanism by which switching occurs depends on the structure of the boundary, the particle size, the temperature, and the strength of the applied field. The theory predicts the existence of a peak in the switching field as a function of system size in both systems with periodic boundary conditions and in systems with boundaries. The size of the peak is strongly dependent on the boundary effects. It is generally reduced by open boundary conditions, and in some cases it disappears if the boundaries are too favorable towards nucleation. However, we also demonstrate conditions under which the peak remains discernible. This peak arises as a purely dynamic effect and is not related to the possible existence of multiple domains. We illustrate the predictions of droplet theory by Monte Carlo simulations of two-dimensional Ising systems with various system shapes and boundary conditions.Comment: RevTex, 48 pages, 13 figure

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Влияние добавок висмута на теплофизические и термодинамические свойства алюминиевого проводникового сплава E-AlMgSi (алдрей)

    Get PDF
    The economic feasibility of using aluminum as a conductive material is explained by the favorable ratio of its cost to the cost of copper. It is also important that the cost of aluminum for many years remains virtually unchanged.When using conductive aluminum alloys for the manufacture of thin wire, winding wire, etc. Certain difficulties may arise in connection with their insufficient strength and a small number of kinks before fracture. In recent years, aluminum alloys have been developed, which even in a soft state have strength characteristics that allow them to be used as a conductive material.One of the promising areas for the use of aluminum is the electrical industry. Conducting aluminum alloys of the E-AlMgSi type (Aldrey) are representatives of this group of alloys. The paper presents the results of a study of the temperature dependence of heat capacity, heat transfer coefficient, and thermodynamic functions of an aluminum alloy E-AlMgSi (Aldrey) with bismuth. Research conducted in the "cooling" mode.It was shown that the temperature capacity and the thermodynamic functions of the alloy E-AlMgSi (Aldrey) with bismuth increase with temperature, and the Gibbs energy decreases. Additives of bismuth up to 1 wt.% Reduce heat capacity, heat transfer coefficient, enthalpy and entropy of the initial alloy and increase the value of Gibbs energy.Экономическая целесообразность применения алюминия в качестве проводникового материала объясняется благоприятным соотношением его стоимости и стоимости меди. Немаловажным является и то, что стоимость алюминия в течение многих лет практически не меняется.При использовании проводниковых алюминиевых сплавов для изготовления тонкой проволоки, обмоточного провода и т.д. могут возникнуть определённые сложности в связи с их недостаточной прочностью и малым числом перегибов до разрушения. В последние годы разработаны алюминиевые сплавы, которые даже в мягком состоянии обладают прочностными характеристиками, позволяющими использовать их в качестве проводникового материала.Одним из перспективных направлений использования алюминия является электротехническая промышленность. Проводниковые алюминиевые сплавы типа E-AlMgSi (алдрей) являются представителями данной группы сплавов. В работе представлены результаты исследования температурной зависимости теплоемкости, коэффициента теплоотдачи и термодинамических функции алюминиевого сплава E-AlMgSi (алдрей) с висмутом. Исследования проведены в режиме «охлаждения».Показано, что от температуры теплоемкость и изменений термодинамический функции сплава E-AlMgSi (“алдрей”) с висмутом увеличиваются, а значение энергия Гиббса уменьшается. Добавки висмута до 1мас.% уменьшают теплоемкость, коэффициент теплоотдачи, энтальпию и энтропию исходного сплава и увеличивают величину энергии Гиббса

    Determination of Protein content in Cheese Products

    No full text
    International audienceThe high concentration of essential amino acids in cheese contributes to the growth and development of the human body. Despite the presence of a notable amount of saturated and trans-fatty acids, there is no clear evidence relating the consumption of cheese to any disease. The high concentration of calcium in cheese is well known to contribute to the formation and maintenance of strong bones and teeth, but also shows a positive effect on blood pressure and helps in losing weight in combination with low-energy diets. The SMART 6 is a system for rapid moisture and fat determination - in less than 5 minutes. The SMART 6 Moisture and Solids Analyzer uses dual-frequency microwave radiation to quickly analyze any product, wet or dry, in 3 minutes or less. Sprint® is a direct protein measurement system using biochemical protein labeling technology that only binds protein nitrogen. Measurement of total nitrogen can lead to erroneous results when non-protein nitrogen is present. Sprint does not require regular calibration and is easy to operate. Competitive express technologies require constant, costly calibrations and method development for each unique sample due to differences in color, texture and consistency

    Research of optimum calculation of vibrating infrared dryers

    No full text
    The purpose of this study is to develop and improve the technological process and experimental and technical means of drying mulberry silkworm cocoons in an infrared (IR) drying unit, which can significantly speed up the processing and obtain a quality end product, as well as reduce energy costs for drying. The scientific novelty consists of the application of vibration in the process of drying silkworm cocoons by infrared radiation and the development of generalized calculation of such drying units. Our proposed calculation of infrared drying units is the most optimal calculation for silkworm cocoon morphing and drying
    corecore