474 research outputs found

    Simultaneous non-negative matrix factorization for multiple large scale gene expression datasets in toxicology

    Get PDF
    Non-negative matrix factorization is a useful tool for reducing the dimension of large datasets. This work considers simultaneous non-negative matrix factorization of multiple sources of data. In particular, we perform the first study that involves more than two datasets. We discuss the algorithmic issues required to convert the approach into a practical computational tool and apply the technique to new gene expression data quantifying the molecular changes in four tissue types due to different dosages of an experimental panPPAR agonist in mouse. This study is of interest in toxicology because, whilst PPARs form potential therapeutic targets for diabetes, it is known that they can induce serious side-effects. Our results show that the practical simultaneous non-negative matrix factorization developed here can add value to the data analysis. In particular, we find that factorizing the data as a single object allows us to distinguish between the four tissue types, but does not correctly reproduce the known dosage level groups. Applying our new approach, which treats the four tissue types as providing distinct, but related, datasets, we find that the dosage level groups are respected. The new algorithm then provides separate gene list orderings that can be studied for each tissue type, and compared with the ordering arising from the single factorization. We find that many of our conclusions can be corroborated with known biological behaviour, and others offer new insights into the toxicological effects. Overall, the algorithm shows promise for early detection of toxicity in the drug discovery process

    bioNMF: a versatile tool for non-negative matrix factorization in biology

    Get PDF
    BACKGROUND: In the Bioinformatics field, a great deal of interest has been given to Non-negative matrix factorization technique (NMF), due to its capability of providing new insights and relevant information about the complex latent relationships in experimental data sets. This method, and some of its variants, has been successfully applied to gene expression, sequence analysis, functional characterization of genes and text mining. Even if the interest on this technique by the bioinformatics community has been increased during the last few years, there are not many available simple standalone tools to specifically perform these types of data analysis in an integrated environment. RESULTS: In this work we propose a versatile and user-friendly tool that implements the NMF methodology in different analysis contexts to support some of the most important reported applications of this new methodology. This includes clustering and biclustering gene expression data, protein sequence analysis, text mining of biomedical literature and sample classification using gene expression. The tool, which is named bioNMF, also contains a user-friendly graphical interface to explore results in an interactive manner and facilitate in this way the exploratory data analysis process. CONCLUSION: bioNMF is a standalone versatile application which does not require any special installation or libraries. It can be used for most of the multiple applications proposed in the bioinformatics field or to support new research using this method. This tool is publicly available at

    Understanding Communication Signals during Mycobacterial Latency through Predicted Genome-Wide Protein Interactions and Boolean Modeling

    Get PDF
    About 90% of the people infected with Mycobacterium tuberculosis carry latent bacteria that are believed to get activated upon immune suppression. One of the fundamental challenges in the control of tuberculosis is therefore to understand molecular mechanisms involved in the onset of latency and/or reactivation. We have attempted to address this problem at the systems level by a combination of predicted functional protein∶protein interactions, integration of functional interactions with large scale gene expression studies, predicted transcription regulatory network and finally simulations with a Boolean model of the network. Initially a prediction for genome-wide protein functional linkages was obtained based on genome-context methods using a Support Vector Machine. This set of protein functional linkages along with gene expression data of the available models of latency was employed to identify proteins involved in mediating switch signals during dormancy. We show that genes that are up and down regulated during dormancy are not only coordinately regulated under dormancy-like conditions but also under a variety of other experimental conditions. Their synchronized regulation indicates that they form a tightly regulated gene cluster and might form a latency-regulon. Conservation of these genes across bacterial species suggests a unique evolutionary history that might be associated with M. tuberculosis dormancy. Finally, simulations with a Boolean model based on the regulatory network with logical relationships derived from gene expression data reveals a bistable switch suggesting alternating latent and actively growing states. Our analysis based on the interaction network therefore reveals a potential model of M. tuberculosis latency

    Trivalent Adenovirus Type 5 HIV Recombinant Vaccine Primes for Modest Cytotoxic Capacity That Is Greatest in Humans with Protective HLA Class I Alleles

    Get PDF
    If future HIV vaccine design strategies are to succeed, improved understanding of the mechanisms underlying protection from infection or immune control over HIV replication remains essential. Increased cytotoxic capacity of HIV-specific CD8+ T-cells associated with efficient elimination of HIV-infected CD4+ T-cell targets has been shown to distinguish long-term nonprogressors (LTNP), patients with durable control over HIV replication, from those experiencing progressive disease. Here, measurements of granzyme B target cell activity and HIV-1-infected CD4+ T-cell elimination were applied for the first time to identify antiviral activities in recipients of a replication incompetent adenovirus serotype 5 (Ad5) HIV-1 recombinant vaccine and were compared with HIV-negative individuals and chronically infected patients, including a group of LTNP. We observed readily detectable HIV-specific CD8+ T-cell recall cytotoxic responses in vaccinees at a median of 331 days following the last immunization. The magnitude of these responses was not related to the number of vaccinations, nor did it correlate with the percentages of cytokine-secreting T-cells determined by ICS assays. Although the recall cytotoxic capacity of the CD8+ T-cells of the vaccinee group was significantly less than that of LTNP and overlapped with that of progressors, we observed significantly higher cytotoxic responses in vaccine recipients carrying the HLA class I alleles B*27, B*57 or B*58, which have been associated with immune control over HIV replication in chronic infection. These findings suggest protective HLA class I alleles might lead to better outcomes in both chronic infection and following immunization due to more efficient priming of HIV-specific CD8+ T-cell cytotoxic responses

    Calpain-5 gene variants are associated with diastolic blood pressure and cholesterol levels

    Get PDF
    BACKGROUND: Genes implicated in common complex disorders such as obesity, type 2 diabetes mellitus (T2DM) or cardiovascular diseases are not disease specific, since clinically related disorders also share genetic components. Cysteine protease Calpain 10 (CAPN10) has been associated with T2DM, hypertension, hypercholesterolemia, increased body mass index (BMI) and polycystic ovary syndrome (PCOS), a reproductive disorder of women in which isunlin resistance seems to play a pathogenic role. The calpain 5 gene (CAPN5) encodes a protein homologue of CAPN10. CAPN5 has been previously associated with PCOS by our group. In this new study, we have analysed the association of four CAPN5 gene variants(rs948976A>G, rs4945140G>A, rs2233546C>T and rs2233549G>A) with several cardiovascular risk factors related to metabolic syndrome in general population. METHODS: Anthropometric measurements, blood pressure, insulin, glucose and lipid profiles were determined in 606 individuals randomly chosen from a cross-sectional population-based epidemiological survey in the province of Segovia in Central Spain (Castille), recruited to investigate the prevalence of anthropometric and physiological parameters related to obesity and other components of the metabolic syndrome. Genotypes at the four polymorphic loci in CAPN5 gene were detected by polymerase chain reaction (PCR). RESULTS: Genotype association analysis was significant for BMI (p ≤ 0.041), diastolic blood pressure (p = 0.015) and HDL-cholesterol levels (p = 0.025). Different CAPN5 haplotypes were also associated with diastolic blood pressure (DBP) (0.0005 ≤ p ≤ 0.006) and total cholesterol levels (0.001 ≤ p ≤ 0.029). In addition, the AACA haplotype, over-represented in obese individuals, is also more frequent in individuals with metabolic syndrome defined by ATPIII criteria (p = 0.029). CONCLUSION: As its homologue CAPN10, CAPN5 seems to influence traits related to increased risk for cardiovascular diseases. Our results also may suggest CAPN5 as a candidate gene for metabolic syndrome

    Inequality, mobility and the financial accumulation process: A computational economic analysis

    Get PDF
    Our computational economic analysis investigates the relationship between inequality, mobility and the financial accumulation process. Extending the baseline model by Levy et al., we characterise the economic process trough stylised return structures generating alternative evolutions of income and wealth through historical time. First we explore the limited heuristic contribution of one and two factors models comprising one single stock (capital wealth) and one single flow factor (labour) as pure drivers of income and wealth generation and allocation over time. Then we introduce heuristic modes of taxation in line with the baseline approach. Our computational economic analysis corroborates that the financial accumulation process featuring compound returns plays a significant role as source of inequality, while institutional configurations including taxation play a significant role in framing and shaping the aggregate economic process that evolves over socioeconomic space and time

    Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam.

    Get PDF
    The main objective of this study is to assess regional landslide hazards in the Hoa Binh province of Vietnam. A landslide inventory map was constructed from various sources with data mainly for a period of 21 years from 1990 to 2010. The historic inventory of these failures shows that rainfall is the main triggering factor in this region. The probability of the occurrence of episodes of rainfall and the rainfall threshold were deduced from records of rainfall for the aforementioned period. The rainfall threshold model was generated based on daily and cumulative values of antecedent rainfall of the landslide events. The result shows that 15-day antecedent rainfall gives the best fit for the existing landslides in the inventory. The rainfall threshold model was validated using the rainfall and landslide events that occurred in 2010 that were not considered in building the threshold model. The result was used for estimating temporal probability of a landslide to occur using a Poisson probability model. Prior to this work, five landslide susceptibility maps were constructed for the study area using support vector machines, logistic regression, evidential belief functions, Bayesian-regularized neural networks, and neuro-fuzzy models. These susceptibility maps provide information on the spatial prediction probability of landslide occurrence in the area. Finally, landslide hazard maps were generated by integrating the spatial and the temporal probability of landslide. A total of 15 specific landslide hazard maps were generated considering three time periods of 1, 3, and 5 years

    Genome Sequencing Reveals Widespread Virulence Gene Exchange among Human Neisseria Species

    Get PDF
    Commensal bacteria comprise a large part of the microbial world, playing important roles in human development, health and disease. However, little is known about the genomic content of commensals or how related they are to their pathogenic counterparts. The genus Neisseria, containing both commensal and pathogenic species, provides an excellent opportunity to study these issues. We undertook a comprehensive sequencing and analysis of human commensal and pathogenic Neisseria genomes. Commensals have an extensive repertoire of virulence alleles, a large fraction of which has been exchanged among Neisseria species. Commensals also have the genetic capacity to donate DNA to, and take up DNA from, other Neisseria. Our findings strongly suggest that commensal Neisseria serve as reservoirs of virulence alleles, and that they engage extensively in genetic exchange
    corecore