2,720 research outputs found
Effect of sterilization by gamma radiation on nano-mechanical properties of teeth
NOTICE: this is the author’s version of a work that was accepted for publication in Dental Materials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Dental Materials, [VOL 24, ISSUE 8, (2008)] DOI: 10.1016/j.dental.2008.02.016.Objectives: Extracted teeth used in dental research need to be considered infective and hence be sterilized without the materials' properties being altered. This study examined the effect of gamma radiation on the nano-mechanical properties of dentin and enamel of extracted human third molars. Methods: Whole teeth were sterilized using gamma radiation doses of 7kGy and 35kGy, respectively; teeth of the control group were not treated with gamma radiation. Crowns were sectioned occlusally and polished. Elastic modulus and hardness were tested using atomic force microscopy with nano-indentations under wet conditions. Results: The authors found no significant dose-response relationship in elastic modulus or hardness in either dentin or enamel. Significance: Nano-indentation is a common technique for the determination of local mechanical properties in biological hard tissues. Gamma radiation is an efficient way to sterilize extracted teeth while alteration of dentin and enamel mechanical properties are minimized
Comparison among Various Expressions of Complex Admittance for Quantum System in Contact with Heat Reservoir
Relation among various expressions of the complex admittance for quantum
systems in contact with heat reservoir is studied. Exact expressions of the
complex admittance are derived in various types of formulations of equations of
motion under contact with heat reservoir. Namely, the complex admittance is
studied in the relaxation method and the external-field method. In the former
method, the admittance is calculated using the Kubo formula for quantum systems
in contact with heat reservoir in no external driving fields, while in the
latter method the admittance is directly calculated from equations of motion
with external driving terms. In each method, two types of equation of motions
are considered, i.e., the time-convolution (TC) equation and
time-convolutionless (TCL) equation. That is, the full of the four cases are
studied. It is turned out that the expression of the complex admittance
obtained by using the relaxation method with the TC equation exactly coincides
with that obtained by using the external-field method with the TC equation,
while other two methods give different forms. It is also explicitly
demonstrated that all the expressions of the complex admittance coincide with
each other in the lowest Born approximation for the systemreservoir
interaction. The formulae necessary for the higher order expansions in powers
of the system-reservoir interaction are derived, and also the expressions of
the admittance in the n-th order approximation are given. To characterize the
TC and TCL methods, we study the expressions of the admittances of two exactly
solvable models. Each exact form of admittance is compared with the results of
the two methods in the lowest Born approximation. It is found that depending on
the model, either of TC and TCL would be the better method.Comment: 34pages, no figur
Colonization ability of Herbaspirillum spp. B501gfp1 in sugarcane, a non-host plant in the presence of indigenous diazotrophic endophytes
Inoculating sugarcane with a mixture of diazotrophic endophytic bacteria has shown that they can provide substantial amount of biologically fixed nitrogen to the plant. The genera of diazotrophic endophytes previously isolated from sugarcane have been reported associating with other nonleguminousplants showing a broad host range. This study examined the colonization ability of a wild rice isolate, Herbaspirillum spp., in sugarcane plants in the presence of indigenous endophytes using two inoculum concentrations (102 and 108 bacterial cells ml-1). Internal tissue colonization was observed in plants inoculated with both the 102 and 108 B501gfp1 bacterial cells ml-1 inoculum concentrations. However, extensive colonization and higher bacterial numbers were determined only in the basal stem tissues of plants inoculated with the 108 bacterial cells ml-1
The role of spatial heterogeneity in the evolution of local and global infections of viruses
Viruses have two modes spread in a host body, one is to release infectious particles from infected cells (global infection) and the other is to infect directly from an infected cell to an adjacent cell (local infection). Since the mode of spread affects the evolution of life history traits, such as virulence, it is important to reveal what level of global and local infection is selected. Previous studies of the evolution of global and local infection have paid little attention to its dependency on the measures of spatial configuration. Here we show the evolutionarily stable proportion of global and local infection, and how it depends on the distribution of target cells. Using an epidemic model on a regular lattice, we consider the infection dynamics by pair approximation and check the evolutionarily stable strategy. We also conduct the Monte-Carlo simulation to observe evolutionary dynamics. We show that a higher local infection is selected as target cells become clustered. Surprisingly, the selected strategy depends not only on the degree of clustering but also the abundance of target cells per se
Cell-to-cell transmission promotes the emergence of double-drug resistance
The use of multiple antivirals in a single patient increases the risk of emergence of multidrug-resistant viruses, posing a public health challenge and limiting management options. Cell-to-cell viral transmission allows a pair of viruses that are each resistant to a single drug to persist for a prolonged period of passages although neither can survive alone under double-drug treatment. This pair should then persist until they accumulate a second mutation to generate resistance to both drugs. Accordingly, we here propose a hypothesis that viruses have a much higher probability of developing double-drug resistance when they are transmitted via a cell-to-cell mode than when they are transmitted via a cell-free mode through released virions. By using a stochastic model describing the changes in the frequencies of viral genotypes over successive infections, we analytically demonstrate that the emergence probability of double resistance is approximately the square of the number of viral genomes that establish infection times greater in cell-to-cell transmission than in cell-free transmission. Our study suggests the importance of inhibiting cell-to-cell transmission during multidrug treatment
Indication of antiferromagnetic interaction between paramagnetic Co ions in the diluted magnetic semiconductor ZnCoO
The magnetic properties of ZnCoO ( and 0.10) thin films,
which were homo-epitaxially grown on a ZnO(0001) substrates with varying
relatively high oxygen pressure, have been investigated using x-ray magnetic
circular dichroism (XMCD) at Co core-level absorption edge. The line
shapes of the absorption spectra are the same in all the films and indicate
that the Co ions substitute for the Zn sites. The magnetic-field and
temperature dependences of the XMCD intensity are consistent with the
magnetization measurements, indicating that except for Co there are no
additional sources for the magnetic moment, and demonstrate the coexistence of
paramagnetic and ferromagnetic components in the homo-epitaxial
ZnCoO thin films, in contrast to the ferromagnetism in the
hetero-epitaxial ZnCoO films studied previously. The analysis of
the XMCD intensities using the Curie-Weiss law reveals the presence of
antiferromagnetic interaction between the paramagnetic Co ions. Missing XMCD
intensities and magnetization signals indicate that most of Co ions are
non-magnetic probably because they are strongly coupled antiferromagnetically
with each other. Annealing in a high vacuum reduces both the paramagnetic and
ferromagnetic signals. We attribute the reductions to thermal diffusion and
aggregation of Co ions with antiferromagnetic nanoclusters in
ZnCoO.Comment: 21 pages, 7 figures, accepted for Physical Review
- …