356 research outputs found

    Hypoxia and the hypoxia inducible factor 1α activate protein kinase A by repressing RII beta subunit transcription

    Get PDF
    Overactivation of the cAMP signal transduction pathway plays a central role in the pathogenesis of endocrine tumors. Genetic aberrations leading to increased intracellular cAMP or directly affecting PKA subunit expression have been identified in inherited and sporadic endocrine tumors, but are rare indicating the presence of nongenomic pathological PKA activation. In the present study, we examined the impact of hypoxia on PKA activation using human growth hormone (GH)-secreting pituitary tumors as a model of an endocrine disease displaying PKA-CREB overactivation. We show that hypoxia activates PKA and enhances CREB transcriptional activity and subsequently GH oversecretion. This is due to a previously uncharacterized ability of HIF-1α to suppress the transcription of the PKA regulatory subunit 2B (PRKAR2B) by sequestering Sp1 from the PRKAR2B promoter. The present study reveals a novel mechanism through which the transcription factor HIF-1α transduces environmental signals directly onto PKA activity, without affecting intracellular cAMP concentrations. By identifying a point of interaction between the cellular microenvironment and intracellular enzyme activation, neoplastic, and nonneoplastic diseases involving overactivated PKA pathway may be more efficiently targeted

    An improved 9 carat yellow gold casting alloy

    Full text link

    Deoxynivalenol content in wheat dust versus wheat grain: a comparative study

    Get PDF
    The present study, set up in the growing season 2011-2012, was designed to obtain quantitative data on the occurrence of deoxynivalenol in wheat grain and the corresponding wheat dust. The field experiment consisted of a complete randomised block design with five wheat varieties sown on a field on which maize was grown in the previous season. The impact of the tillage method and the influence of the wheat variety resistance on the deoxynivalenol content of wheat and wheat dust were investigated. The accumulation of deoxynivalenol in wheat dust was confirmed and a sigmoidal relationship between the deoxynivalenol content in wheat dust versus wheat grain was determined. Deoxynivalenol reduction was obtained by ploughing and by sowing moderately resistant wheat varieties. As wheat dust provides equal results and solves the problem of heterogeneity during sampling of conventional wheat matrix, the sampling of wheat dust can be considered as a promising alternative

    A study of carry-over and histopathological effects after chronic dietary intake of citrinin in pigs, broiler chickens and laying hens

    Get PDF
    Citrinin (CIT) is a polyketide mycotoxin occurring in a variety of food and feedstuff, among which cereal grains are the most important contaminated source. Pigs and poultry are important livestock animals frequently exposed to mycotoxins, including CIT. Concerns are rising related to the toxic, and especially the potential nephrotoxic, properties of CIT. The purpose of this study was to clarify the histopathological effects on kidneys, liver, jejunum and duodenum of pigs, broiler chickens and laying hens receiving CIT contaminated feed. During 3 weeks, pigs (n = 16) were exposed to feed containing 1 mg CIT/kg feed or to control feed (n = 4), while 2 groups of broiler chickens and laying hens (n = 8 per group) received 0.1 mg CIT/kg feed (lower dose group) and 3 or 3.5 mg CIT/kg feed (higher dose group), respectively, or control feed (n = 4). CIT concentrations were quantified in plasma, kidneys, liver, muscle and eggs using a validated ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. Kidneys, liver, duodenum and jejunum were evaluated histologically using light microscopy, while the kidneys were further examined using transmission electron microscopy (TEM). Histopathology did not reveal major abnormalities at the given contamination levels. However, a significant increase of swollen and degenerated mitochondria in renal cortical cells from all test groups were observed (p < 0.05). These observations could be related to oxidative stress, which is the major mechanism of CIT toxicity. Residues of CIT were detected in all collected tissues, except for muscle and egg white from layers in the lowest dose group, and egg white from layers in the highest dose group. CIT concentrations in plasma ranged between 0.1 (laying hens in lower dose group) and 20.8 ng/mL (pigs). In tissues, CIT concentrations ranged from 0.6 (muscle) to 20.3 µg/kg (liver) in pigs, while concentrations in chickens ranged from 0.1 (muscle) to 70.2 µg/kg (liver). Carry-over ratios from feed to edible tissues were between 0.1 and 2% in pigs, and between 0.1 and 6.9% in chickens, suggesting a low contribution of pig and poultry tissue-derived products towards the total dietary CIT intake for humans

    Evaluation of mycotoxin content in soybean (Glycine max l.) grown in Rwanda

    Get PDF
    Soybean is a critical food and nutritional security crop in Rwanda. Promoted by the Rwandan National Agricultural Research System for both adults and as an infant weaning food, soybean is grown by approximately 40% of households. Soybean may be susceptible to the growth of mycotoxin-producing moulds; however, data has been contradictory. Mycotoxin contamination is a food and feed safety issue for grains and other field crops. This study aimed to determine the extent of mycotoxin contamination in soybean, and to assess people’s awareness on mycotoxins. A farm-level survey was conducted in 2015 within three agro-ecological zones of Rwanda suitable for soybean production. Soybean samples were collected from farmers (n=300) who also completed questionnaires about pre-and post-harvest farm practices, and aflatoxin awareness. The concentration of total aflatoxin in individual soybean samples was tested by enzymelinked immunosorbent assay (ELISA) using a commercially-available kit. Other mycotoxins were analyzed using liquid chromatography-mass spectrometry (LCMS/ MS) on 10 selected sub samples. Only 7.3% of the respondents were aware of aflatoxin contamination in foods, but farmers observed good postharvest practices including harvesting the crop when the pods were dry. Using enzyme-linked immunosorbent assay (ELISA), only one sample had a concentration (11 μg/kg) above the most stringent EU maximum permitted limit of 4 μg/kg. Multi-mycotoxins liquid chromatography-mass spectrometry (LC-MS/MS) results confirmed that soybeans had low or undetectable contamination; only one sample contained 13μg/kg of sterigmatocystine. The soybean samples from Rwanda obtained acceptably low mycotoxin levels. Taken together with other studies that showed that soybean is less contaminated by mycotoxins, these results demonstrate that soybean can be promoted as a nutritious and safe food. However, there is a general need for educating farmers on mycotoxin contamination in food and feed to ensure better standards are adhered to safeguard the health of the consumers regarding these fungal secondary metabolites.Key words: soybean, safety, mould, aflatoxin, mycotoxins, sterigmatocystine, ELISA, LC-MS/MS, Rwand
    corecore