20 research outputs found

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF

    Preparation and characterization of novel polyimide-silica hybrids

    No full text
    Polyimide-silica (PI-SiO2) hybrids were prepared from a novel polyimide (PI), derived from pyromellitic dianhydride (PMDA), 1,6-bis(4-aminophenoxy)hexane (synthesized) and 4,4′-oxydianiline. SiO2 networks (5-30wt%) were generated through sol-gel process using either tetraethylorthosilicate (TEOS) or a mixture of 3-aminopropyltriethoxysilane-PMDA-based coupling oligomers (APA) and TEOS. Thin, free standing hybrid films were obtained from the respective mixtures by casting and curing processes. The hybrid films were characterized using Fourier transform infrared, 29Si nuclear magnetic resonance (NMR), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometry and atomic force microscopy (AFM) techniques. 29Si NMR results provide information about formation of organically modified silicate structures that were further substantiated by FE-SEM and AFM micrographs. Contact angle measurements and thermogravimetric thermograms reveal that the addition of APA profoundly influences surface energy, interfacial tension, thermal stability and the residual char yield of modified hybrids in comparison to those obtained by mixing only TEOS. It was found that reduced particle size, efficient dispersion and improved interphase interactions were responsible for the eventual property enhancement. © 2012 John Wiley &amp;amp; Sons, Ltd.

    Synthesis and characterization of novel coatable polyimide-silica nanocomposites

    No full text
    We report synthesis of a novel diamine 1,2-bis(4-(Hydrazonomethyl)phenoxy) ethane (bis- HPE) and a derived novel polyimide. The diamine was reacted with PMDA and ODA to synthesize copolyimide. Unmodified and modified silica particles were dispersed in the polyimide to prepare polyimide-silica hybrids: (a) unmodified (PSH-UM), and (b) modified (PSH-M). The PSH-UM were prepared by generating silica particles in situ in PI. In PSH-M, structural group identical to PI, 2,6- bis(3-(triethoxysilyl)propyl)pyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)- tetraone was introduced into silica nano-particles. The structural similarity enhanced compatibility between organic-inorganic components by like-like chemical interactions as both contain flexible alkyl groups. PSH-M have shown improved surface smoothness, hydrophobicity and thermal stability. Such properties are mandatory for stable coatings. The structure of silica and PI was affirmed by FTIR, EDX, and solid-state 29Si NMR spectroscopy. Morphological and thermal properties of the prepared PI-SiO2 nano-composites were investigated by field emission scanning electron microscopy, atomic force microscopy, contact angle measurement and thermogravimetric analysis. © 2013 Springer Science+Business Media Dordrecht.

    Development of novel coatable compatibilized polyimide-modified silica nanocomposites

    No full text
    A series of novel coatable polyimide silica (PI-SiO2) nanocomposites have been synthesized. A new PI matrix, containing pendant hydroxyl groups, was prepared reacting diamine monomers (4,4&apos;-diamino-4&quot;- hydroxytriphenylmethane, and 4,4&apos;- oxydianiline) and pyromellitic dianhydride (PMDA). Whereas, silica reinforcement was generated using TEOS. A coupling oligomeric species 2,6-bis(3-(triethoxysilyl)propyl)pyrrolo[3,4- f]isoindole-1,3,5,7(2H,6H)-tetraone (APA) was used to furnish silica nanoparticles with imide linkages and hydroxyl groups. As these groups are already present in PI matrix, so their presence in nanoparticles brought structural similarity, and hence enhanced phase connectivity among two phases. The resulting PI-SiO2 hybrids, with improved interfacial interactions through hydrogen bonding and like-like chemical interactions, displayed much enhanced morphological, thermomechanical, and thermal properties. The properties of resulting hybrids were studied by various advanced techniques and compared with PI-SiO2 hybrid system which was prepared from same polyimide and unmodified silica network.© Springer Science+Business Media Dordrecht 2014.

    Effect of weaning age and milk feeding volume on growth performance of Nili-Ravi buffalo calves

    No full text
    The objective of this study was to evaluate the growth performance of early or late weaned Nili-Ravi buffalo calves offered feeding regimes of low or high milk volumes. For this purpose, 48-day-old buffalo calves were randomly allocated to four treatments of twelve calves each. Calves were weaned either at day 56 (early weaned) or 84 (late weaned). Within each weaning age calves were offered milk at either 10% (low milk) or 15% (high milk) of their body weight. Early weaned calves were offered milk adjusted weekly until day 35; the calculated milk intake at day 35 was reduced by one-third in each of the last two weeks leading to the weaning of the calves at day 56. Late weaned calves were offered milk, adjusted weekly, until day 63 and weaned at day 84 by decreasing milk by one-third each week for the last two weeks. At week sixteen, late weaned calves had higher body weight and average daily gain than early weaned calves (p < .05). These same measurements were also higher in the high milk than the low milk fed calves (p < .05). Highest body weight and average daily gain was recorded in high milk late weaned calves and poorest in low milk early weaned calves. Early weaning or low milk volumes minimised the feeding costs, however, resulted in lower body weights and average daily gains. Thus, choices of pre-weaning feeding regimen should be made with feeding cost and performance of replacement calves kept in mind

    Minocycline-Derived Silver Nanoparticles for Assessment of Their Antidiabetic Potential against Alloxan-Induced Diabetic Mice

    No full text
    Diabetes is a life-threatening disease, and chronic diabetes affects parts of the body including the liver, kidney, and pancreas. The root cause of diabetes is mainly associated with oxidative stress produced by reactive oxygen species. Minocycline is a drug with a multi-substituted phenol ring and has shown excellent antioxidant activities. The objective of the present study was to investigate the antidiabetic potential of minocycline-modified silver nanoparticles (mino/AgNPs) against alloxan-induced diabetic mice. The mino/AgNPs were synthesized using minocycline as reducing and stabilizing agents. UV-visible, FT-IR, X-ray diffraction (XRD), and transmission electron microscopy (TEM) were applied for the characterization of mino/AgNPs. A 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay was conducted to determine the antioxidant potential of newly synthesized mino/AgNPs. The results revealed that the mino/AgNPs showed higher radical scavenging activity (IC50 = 19.7 µg/mL) compared to the minocycline (IC50 = 26.0 µg/mL) and ascorbic acid (IC50 = 25.2 µg/mL). Further, mino/AgNPs were successfully employed to examine their antidiabetic potential against alloxan-induced diabetic mice. Hematological results showed that the mice treated with mino/AgNPs demonstrated a significant decrease in fasting blood glucose level and lipid profile compared to the untreated diabetic group. A histopathological examination confirmed that the diabetic mice treated with mino/AgNPs showed significant recovery and revival of the histo-morphology of the kidney, central vein of the liver, and islet cells of the pancreas compared to the untreated diabetic mice. Hence, mino/AgNPs have good antidiabetic potential and could be an appropriate nanomedicine to prevent the development of diabetes

    A highly prevalent and genetically diversified Picornaviridae genus in South Asian children

    No full text
    Viral metagenomics focused on particle-protected nucleic acids was used on the stools of South Asian children with nonpolio acute flaccid paralysis (AFP). We identified sequences distantly related to Seneca Valley virus and cardioviruses that were then used as genetic footholds to characterize multiple viral species within a previously unreported genus of the Picornaviridae family. The picornaviruses were detected in the stools of >40% of AFP and healthy Pakistani children. A genetically diverse and highly prevalent enteric viral infection, characteristics similar to the Enterovirus genus, was therefore identified substantially expanding the genetic diversity of the RNA viral flora commonly found in children
    corecore