19 research outputs found

    Shape Memory Behavior of Dense and Porous NiTi Alloys Fabricated by Selective Laser Melting

    Get PDF
    Selective Laser Melting (SLM) of Additive Manufacturing is an attractive fabrication method that employs CAD data to selectively melt the metal powder layer by layer via a laser beam and produce a 3D part. This method not only opens a new window in overcoming traditional NiTi fabrication problems but also for producing porous or complex shaped structures. The combination of SLM fabrication advantages with the unique properties of NiTi alloys, such as shape memory effect, superelasticity, high ductility, work output, corrosion, biocompatibility, etc. makes SLM NiTi alloys extremely promising for numerous applications. The SLM process parameters such as laser power, scanning speed, spacing, and strategy used during the fabrication are determinant factors in composition, microstructural features and functional properties of the SLM NiTi alloy. Therefore, a comprehensive and systematic study has been conducted over Ni50.8 Ti49.2 (at%) alloy to understand the influence of each parameter individually. It was found that a sharp [001] texture is formed as a result of SLM fabrication which leads to improvements in the superelastic response of the alloy. It was perceived that transformation temperatures, microstructure, hardness, the intensity of formed texture and the correlated thermo-mechanical response are changed substantially with alteration of each parameter. The provided knowledge will allow choosing optimized parameters for tailoring the functional features of SLM fabricated NiTi alloys. Without going through any heat treatments, 5.77% superelasticity with more than 95% recovery ratio was obtained in as-fabricated condition only with the selection of right process parameters. Additionally, thermal treatments can be utilized to form precipitates in Ni-rich SLM NiTi alloys fabricated by low energy density. Precipitation could significantly alter the matrix composition, transformation temperatures and strain, critical stress for transformation, and shape memory response of the alloy. Therefore, a systematic aging study has been performed to reveal the effects of aging time and temperature. It was found that although SLM fabricated samples show lower strength than the initial ingot, heat treatments can be employed to make significant improvements in shape memory response of SLM NiTi. Up to 5.5% superelastic response and perfect shape memory effect at stress levels up to 500 MPa was observed in solutionized Ni-rich SLM NiTi after 18h aging at 350ºC. For practical application, transformation temperatures were even adjusted without solution annealing and superelastic response of 5.5% was achieved at room temperature for 600C-1.5hr aged Ni-rich SLM NiTi. The effect of porosity on strength and cyclic response of porous SLM Ni50.1 Ti49.9 (at%) were investigated for potential bone implant applications. It is shown that mechanical properties of samples such as elastic modulus, yield strength, and ductility of samples are highly porosity level and pore structure dependent. It is shown that it is feasible to decrease Young’s modulus of the SLM NiTi up to 86% by adding porosity to reduce the mismatch with that of a bone and still retain the shape memory response of SLM fabricated NiTi. The shape memory effect, as well as superelastic response of porous SLM Ni50.8Ti49.2,were also investigated at body temperature. 32 and 45% porous samples with similar behaviors, recovered 3.5% of 4% deformation at first cycle. The stabilized superelastic response was obtained after clicking experiments

    Selective Laser Melting of Ni-Rich NiTi: Selection of Process Parameters and the Superelastic Response

    Get PDF
    Material and mechanical properties of NiTi shape memory alloys strongly depend on the fabrication process parameters and the resulting microstructure. In selective laser melting, the combination of parameters such as laser power, scanning speed, and hatch spacing determine the microstructural defects, grain size and texture. Therefore, processing parameters can be adjusted to tailor the microstructure and mechanical response of the alloy. In this work, NiTi samples were fabricated using Ni50.8Ti (at.%) powder via SLM PXM by Phenix/3D Systems and the effects of processing parameters were systematically studied. The relationship between the processing parameters and superelastic properties were investigated thoroughly. It will be shown that energy density is not the only parameter that governs the material response. It will be shown that hatch spacing is the dominant factor to tailor the superelastic response. It will be revealed that with the selection of right process parameters, perfect superelasticity with recoverable strains of up to 5.6% can be observed in the as-fabricated condition

    Influence of SLM on Compressive Response of NiTi Scaffolds

    Get PDF
    Porous Nickel-Titanium shape memory alloys (NiTi-SMAs) have attracted much attention in biomedical applications due to their high range of pure elastic deformability (i.e., superelasticity) as well as their bone-level modulus of elasticity (E≈12-20 GPa). In recent years, Selective Laser Melting (SLM) has been used to produce complex NiTi components. The focus of this study is to investigate the superelasticity and compressive properties of SLM NiTi-SMAs. To this aim, several NiTi components with different level of porosities (32- 58%) were fabricated from Ni50.8Ti (at. %) powder via SLM PXM by Phenix/3D Systems, using optimum processing parameter (Laser power-P=250 W, scanning speed-v=1250mm/s, hatch spacing-h=120μm, layer thickness-t=30μm). To tailor the superelasticity behavior at body temperature, the samples were solution annealed and aged for 15 min at 350°C. Then, transformation temperatures (TTs), superelastic response, and cyclic behavior of NiTi samples were studied. As the porosity was increased, the irrecoverable strain was observed to be higher in the samples. At the first superelastic cycle, 3.5%, 3.5%, and 2.7% strain recovery were observed for the porosity levels of 32%, 45%, and 58%, respectively. However, after 10 cycles, the superelastic response of the samples was stabilized and full strain recovery was observed. Finally, the modulus of elasticity of dense SLM NiTi was decreased from 47 GPa to 9 GPa in the first cycle by adding 58% porosity

    Additive Manufacturing of NiTiHf High Temperature Shape Memory Alloy

    Get PDF
    Additive manufacturing of a NiTi-20Hf high temperature shape memory alloy (HTSMA) was investigated. A selective laser melting (SLM) process by Phenix3D Systems was used to develop components from NiTiHf powder (of approximately 25-75 m particle fractions), and the thermomechanical response was compared to the conventionally vacuum induction skull melted counterpart. Transformation temperatures of the SLM material were found to be slightly lower due to the additional oxygen pick up from the gas atomization and melting process. The shape memory response in compression was measured for stresses up to 500 MPa, and transformation strains were found to be very comparable (Up to 1.26 for the as-extruded; up to 1.52 for SLM)

    Achieving Superelasticity in Additively Manufactured NiTi in Compression Without Post-Process Heat Treatment

    Get PDF
    Shape memory alloys (SMAs), such as Nitinol (i.e., NiTi), are of great importance in biomedical and engineering applications due to their unique superelasticity and shape memory properties. In recent years, additive manufacturing (AM) processes have been used to produce complex NiTi components, which provide the ability to tailor microstructure and thus the critical properties of the alloys, such as the superelastic behavior and transformation temperatures (TTs), by selection of processing parameters. In biomedical applications, superelasticity in implants play a critical role since it gives the implants bone-like behavior. In this study, a methodology of improving superelasticity in Ni-rich NiTi components without the need for any kind of post-process heat treatments will be revealed. It will be shown that superelasticity with 5.62% strain recovery and 98% recovery ratio can be observed in Ni-rich NiTi after the sample is processed with 250 W laser power, 1250 mm/s scanning speed, and 80 µm hatch spacing without, any post-process heat treatments. This superelasticity in as-fabricated Ni-rich SLM NiTi was not previously possible in the absence of post-process heat treatments. The findings of this study promise the fast, reliable and inexpensive fabrication of complex shaped superelastic NiTi components for many envisioned applications such as patient-specific biomedical implants

    Experimental Analysis of Ultra-High Strength NiTiHfPd Shape Memory Alloys

    No full text
    Ultra-high strength of NiTiHfPd alloys have been promising for specific application areas of SMAs. Thus, the main objective of this study is to further understand the high strength behavior of the alloys through experimental and theoretical studies. Shape memory response of an ultra-high strength Ni45.3Ti29.7Hf20Pd5 alloy was systematically investigated after aging at 550 °C for 5 h via constant-stress temperature cycling and constant-temperature stress cycling experiments. Shape memory behavior under a wide range of compressive stress levels from 300 to 1200 MPa was reported before and after stress cycling of 5000 times. The alloys showed a reversible strain of 1.3% against an ultra-high stress of 2 GPa. It is concluded that the combination of high strength and temperature capability mainly stems from high chemical complexity in addition to aging and will be quite advantageous in practical applications

    A machine learning approach to predict austenite finish temperature in quaternary NiTiHfPd SMAs

    No full text
    Machine learning (ML) has emerged as a promising tool for the design of multicomponent alloys due to their vast design spaces. Quaternary NiTiHfPd shape memory alloys (SMAs) possess unique potential to be employed in high-temperature actuation as well as damping systems. This study presents a machine learning approach using the currently available limited data regime to accelerate research on NiTiHfPd SMAs. To this end, a database of transformation temperatures of NiTiHfPd SMAs was compiled and expanded through compositional and post-processing features of the alloys. Various ML algorithms were utilized to predict the austenite finish temperature of NiTiHfPd SMAs and then validated through experiments

    Energy damping in shape memory alloys: A review

    No full text
    In recent years shape memory alloys (SMAs) have gained significant attention as potential damping device materials. This article presents an extensive review of the damping characteristics of SMAs, as well as experimental methods used to characterize their damping properties. The shape memory response and associated damping quality are discussed for three popular families of SMAs; Fe-based, Cu-based, and NiTi-based alloys including their behaviors and limitations. This review article also summarizes the most important parameters that impact the damping behavior of SMAs which are necessary to be investigated by researchers and manufacturers to address the current design challenges
    corecore