230 research outputs found
Varicella-zoster virus IE63 protein phosphorylation by roscovitine-sensitive cyclin-dependent kinases modulates its cellular localization and activity.
peer reviewedDuring the first stage of Varicella-Zoster virus (VZV) infection, IE63 (immediate early 63 protein) is mostly expressed in the nucleus and also slightly in the cytoplasm, and during latency, IE63 localizes in the cytoplasm quite exclusively. Because phosphorylation is known to regulate various cellular mechanisms, we investigated the impact of phosphorylation by roscovitine-sensitive cyclin-dependent kinase (RSC) on the localization and functional properties of IE63. We demonstrated first that IE63 was phosphorylated on Ser-224 in vitro by CDK1 and CDK5 but not by CDK2, CDK7, or CDK9. Furthermore, by using roscovitine and CDK1 inhibitor III (CiIII), we showed that CDK1 phosphorylated IE63 on Ser-224 in vivo. By mutagenesis and the use of inhibitors, we demonstrated that phosphorylation on Ser-224 was important for the correct localization of the protein. Indeed, the substitution of these residues by alanine led to an exclusive nuclear localization of the protein, whereas mutations into glutamic acid did not modify its subcellular distribution. When transfected or VZV-infected cells were treated with roscovitine or CiIII, an exclusive nuclear localization of IE63 was also observed. By using a transfection assay, we also showed that phosphorylation on Ser-224 and Thr-222 was essential for the down-regulation of the basal activity of the VZV DNA polymerase gene promoter. Similarly, roscovitine and CiIII impaired these properties of the wild-type form of IE63. These observations clearly demonstrated the importance of CDK1-mediated IE63 phosphorylation for a correct distribution of IE63 between both cellular compartments and for its repressive activity toward the promoter tested
Recognition of the latency-associated immediate early protein IE63 of varicella-zoster virus by human memory T-lymphocytes
peer reviewedVaricella-zoster virus (VZV) is a human alpha herpesvirus that establishes latency in sensory ganglia. Latency is characterized by the abundant expression of the immediate early protein 63 (IE63), whereas other viral proteins have not yet been detected during the quiescent phase of VZV infection. The IE63 protein is a component of the virion and is expressed very early in the infectious cycle. The IE63 protein is also expressed in skin during episodes of varicella and herpes zoster. We have evaluated the cell-mediated immune response against IE63 in naturally immune adults with a history of chickenpox, by T lymphoproliferation and cytotoxicity assays. Among donors who had T cell proliferation to unfractionated VZV Ags from infected cell extract, 59% had T cell recognition of purified IE63. The CTL response to IE63 was equivalent to CTL recognition of IE62, the major tegument component of VZV whose immunogenicity has been previously described. IgG Abs against IE63 were detected in serum from healthy immune adults. These results indicate that IE63 is an important target of immunity to VZV. T cell recognition of IE63 is likely to be involved in controlling VZV reactivation from latency
Varicella vaccination in Japan, South Korea, and Europe.
The most extensive use of varicella vaccine has been in the United States and Canada, where it is universally recommended. However, a number of other countries now have recommendations for use of the vaccine, which has been expanding in Europe and Latin America. In this article, we review information concerning varicella vaccination in Japan, where the vaccine was first developed, and in South Korea and parts of Europe. Despite the worldwide availability of an efficient vaccine, varicella vaccination policy is highly variable from country to country. The recent development of a tetravalent vaccine against measles, mumps, rubella, and varicella could modify this variability in the future. It is evident that efforts to control varicella will spread gradually to all continents
The Varicella-Zoster Virus Immediate-Early 63 protein affects chromatin controlled gene transcription in a cell-type dependent manner
Varicella Zoster Virus Immediate Early 63 protein (IE63) has been shown to be essential for VZV replication, and critical for latency establishment. The activity of the protein as a transcriptional regulator is not fully clear yet. Using transient transfection assays, IE63 has been shown to repress viral and cellular promoters containing typical TATA boxes by interacting with general transcription factors.
In this paper, IE63 regulation properties on endogenous gene expression were evaluated using an oligonucleotide-based micro-array approach. We found that IE63 modulates the transcription of only a few genes in HeLa cells including genes implicated in transcription or immunity. Furthermore, we showed that this effect is mediated by a modification of RNA POL II binding on the promoters tested and that IE63 phosphorylation was essential for these effects. In MeWo cells, the number of genes whose transcription was modified by IE63 was somewhat higher, including genes implicated in signal transduction, transcription, immunity, and heat-shock signalling. While IE63 did not modify the basal expression of several NF-κB dependent genes such as IL-8, ICAM-1, and IκBα, it modulates transcription of these genes upon TNFα induction. This effect was obviously correlated with the amount of p65 binding to the promoter of these genes and with histone H3 acetylation and HDAC-3 removal.
Conclusion
While IE63 only affected transcription of a small number of cellular genes, it interfered with the TNF-inducibility of several NF-κB dependent genes by the accelerated resynthesis of the inhibitor IκBα
Varicella-Zoster Virus IE4 Protein Interacts with SR Proteins and Exports mRNAs through the TAP/NXF1 Pathway
Available data suggest that the Varicella-Zoster virus (VZV) IE4 protein acts as an important regulator on VZV and cellular genes expression and could exert its functions at post-transcriptional level. However, the molecular mechanisms supported by this protein are not yet fully characterized. In the present study, we have attempted to clarify this IE4-mediated gene regulation and identify some cellular partners of IE4. By yeast two-hybrid and immunoprecipitation analysis, we showed that IE4 interacts with three shuttling SR proteins, namely ASF/SF2, 9G8 and SRp20. We positioned the binding domain in the IE4 RbRc region and we showed that these interactions are not bridged by RNA. We demonstrated also that IE4 strongly interacts with the main SR protein kinase, SRPK1, and is phosphorylated in in vitro kinase assay on residue Ser-136 contained in the Rb domain. By Northwestern analysis, we showed that IE4 is able to bind RNA through its arginine-rich region and in immunoprecipitation experiments the presence of RNA stabilizes complexes containing IE4 and the cellular export factors TAP/NXF1 and Aly/REF since the interactions are RNase-sensitive. Finally, we determined that IE4 influences the export of reporter mRNAs and clearly showed, by TAP/NXF1 knockdown, that VZV infection requires the TAP/NXF1 export pathway to express some viral transcripts. We thus highlighted a new example of viral mRNA export factor and proposed a model of IE4-mediated viral mRNAs export
Immediate early protein of equid herpesvirus type 1 as a target for cytotoxic T-lymphocytes in the thoroughbred horse
Cytotoxic T-lymphocytes (CTLs) are associated with protective immunity against disease caused by equid herpesvirus type 1 (EHV-1). However, the EHV-1 target proteins for CTLs are poorly defined. This limits the development of vaccine candidates designed to stimulate strong CTL immunity. Here, classical CTL assays using lymphocytes from horses of three defined MHC class I types that experienced natural infection with EHV-1 and a modified vaccinia virus construct containing an EHV-1 gene encoding the immediate-early (IE) protein are reported. Horses homozygous for the equine leukocyte antigen (ELA)-A2 haplotype, but not the ELA-A5 haplotype, produced MHC-restricted CTL responses against the IE protein. Previously, horses homozygous for the ELA-A3 haplotype also mounted CTL responses against the IE protein. Both haplotypes are common in major horse breeds, including the Thoroughbred. Thus, the IE protein is an attractive candidate molecule for future studies of T-cell immunity to EHV-1 in the horse
Recommended from our members
Varicella vaccination in Europe – taking the practical approach
Varicella is a common viral disease affecting almost the entire birth cohort. Although usually self-limiting, some cases of varicella can be serious, with 2 to 6% of cases attending a general practice resulting in complications. The hospitalisation rate for varicella in Europe ranges from 1.3 to 4.5 per 100,000 population/year and up to 10.1% of hospitalised patients report permanent or possible permanent sequelae (for example, scarring or ataxia). However, in many countries the epidemiology of varicella remains largely unknown or incomplete.
In countries where routine childhood vaccination against varicella has been implemented, it has had a positive effect on disease prevention and control. Furthermore, mathematical models indicate that this intervention strategy may provide economic benefits for the individual and society. Despite this evidence and recommendations for varicella vaccination by official bodies such as the World Health Organization, and scientific experts in the field, the majority of European countries (with the exception of Germany and Greece) have delayed decisions on implementation of routine childhood varicella vaccination, choosing instead to vaccinate high-risk groups or not to vaccinate at all.
In this paper, members of the Working Against Varicella in Europe group consider the practicalities of introducing routine childhood varicella vaccination in Europe, discussing the benefits and challenges of different vaccination options (vaccination vs. no vaccination, routine vaccination of infants vs. vaccination of susceptible adolescents or adults, two doses vs. one dose of varicella vaccine, monovalent varicella vaccines vs. tetravalent measles, mumps, rubella and varicella vaccines, as well as the optimal interval between two doses of measles, mumps, rubella and varicella vaccines).
Assessment of the epidemiology of varicella in Europe and evidence for the effectiveness of varicella vaccination provides support for routine childhood programmes in Europe. Although European countries are faced with challenges or uncertainties that may have delayed implementation of a childhood vaccination programme, many of these concerns remain hypothetical and with new opportunities offered by combined measles, mumps, rubella and varicella vaccines, reassessment may be timely
Varicella vaccination coverage of children under two years of age in Germany
Background: Since July 2004, routine varicella vaccination is recommended by the German Standing Vaccination Committee in Germany. Health Insurance Funds started to cover vaccination costs at different time points between 2004 and 2006 in the Federal States. Nationwide representative data on vaccination coverage against varicella of children under two years of age are not available. We aimed to determine varicella vaccination coverage in statutory health insured children under two years of age in twelve German Federal States using data from associations of statutory health insurance physicians (ASHIPs), in order to investigate the acceptance of the recommended routine varicella vaccination programme. Methods: We analysed data on varicella vaccination from 13 of 17 ASHIPs of the years 2004 to 2007. The study population consisted of all statutory health insured children under two years of age born in 2004 (cohort 2004) or 2005 (cohort 2005) in one of the studied regions. Vaccination coverage was determined by the number of children vaccinated under 2 years of age within the study population. Results: Varicella vaccination coverage of children under two years of age with either one dose of the monovalent varicella vaccine or two doses of the measles, mumps, rubella, and varicella vaccine increased from 34% (cohort 2004) to 51% (cohort 2005) in the studied regions (p < 0.001). More than half of the vaccinated children of cohort 2004 and two third of cohort 2005 were immunised at the recommended age 11 to 14 months. The level of vaccination coverage of cohort 2004 was significantly associated with the delay in introduction of cost coverage since the recommendation of varicella vaccination (p < 0.001). Conclusions: Our study shows increasing varicella vaccination coverage of young children, indicating a growing acceptance of the routine varicella vaccination programme by the parents and physicians. We recommend further monitoring of vaccination coverage using data from ASHIPs to investigate acceptance of the routine vaccination programmes over time
- …