80 research outputs found

    S6E4: What does the future hold for Maine aquaculture?

    Get PDF
    Aquaculture is a growing industry in Maine. It yields more than 100millioninoveralleconomicimpacteachyear,nearlythreetimesasmuchasthe100 million in overall economic impact each year, nearly three times as much as the 50 million it contributed in 2007. Farmers and businesses in working waterfronts support themselves and the economy by cultivating Atlantic salmon, oysters, seaweed and many other aquatic flora and fauna. Despite the increased consumption of seafood harvested from Maine waters, the industry faces several hurdles to further expansion. Most Americans consume fish from overseas, and many wild-caught populations are in severe decline and danger of collapse. The Maine Aquaculture Roadmap, 2022–2032 was created to help tackle the challenges the state aquaculture industry faces and identify resources to support it. In this episode of “The Maine Question,” Heather Sadusky, marine extension associate with Maine Sea Grant and coordinator for the Maine Aquaculture Hub, and Deborah Bouchard, director of the University of Maine Aquaculture Research Institute, describe this 10-year plan to bolster the industry

    Executive summary of the KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease:an update based on rapidly emerging new evidence

    Get PDF
    The Kidney Disease: Improving Global Outcomes (KDIGO) 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease (CKD) represents a focused update of the KDIGO 2020 guideline on the topic. The guideline targets a broad audience of clinicians treating people with diabetes and CKD. Topic areas for which recommendations are updated based on new evidence include Chapter 1: Comprehensive care in patients with diabetes and CKD and Chapter 4: Glucose-lowering therapies in patients with type 2 diabetes (T2D) and CKD. The content of previous chapters on Glycemic monitoring and targets in patients with diabetes and CKD (Chapter 2), Lifestyle interventions in patients with diabetes and CKD (Chapter 3), and Approaches to management of patients with diabetes and CKD (Chapter 5) has been deemed current and was not changed. This guideline update was developed according to an explicit process of evidence review and appraisal. Treatment approaches and guideline recommendations are based on systematic reviews of relevant studies and appraisal of the quality of the evidence, and the strength of recommendations followed the “Grading of Recommendations Assessment, Development and Evaluation” (GRADE) approach. Limitations of the evidence are discussed, and areas for which additional research is needed are presented

    Executive summary of the 2020 KDIGO Diabetes Management in CKD Guideline:evidence-based advances in monitoring and treatment

    Get PDF
    THE KIDNEY DISEASE: Improving Global Outcomes (KDIGO) Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease represents the first KDIGO guideline on this subject. The guideline comes at a time when advances in diabetes technology and therapeutics offer new options to manage the large population of patients with diabetes and chronic kidney disease (CKD) at high risk of poor health outcomes. An enlarging base of high-quality evidence from randomized clinical trials is available to evaluate important new treatments offering organ protection, such as sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists. The goal of the new guideline is to provide evidence-based recommendations to optimize the clinical care of people with diabetes and CKD by integrating new options with existing management strategies. In addition, the guideline contains practice points to facilitate implementation when insufficient data are available to make well-justified recommendations or when additional guidance may be useful for clinical application. The guideline covers comprehensive care of patients with diabetes and CKD, glycemic monitoring and targets, lifestyle interventions, antihyperglycemic therapies, and self-management and health systems approaches to management of patients with diabetes and CKD

    Phylogenetic Distribution of Intron Positions in Alpha-Amylase Genes of Bilateria Suggests Numerous Gains and Losses

    Get PDF
    Most eukaryotes have at least some genes interrupted by introns. While it is well accepted that introns were already present at moderate density in the last eukaryote common ancestor, the conspicuous diversity of intron density among genomes suggests a complex evolutionary history, with marked differences between phyla. The question of the rates of intron gains and loss in the course of evolution and factors influencing them remains controversial. We have investigated a single gene family, alpha-amylase, in 55 species covering a variety of animal phyla. Comparison of intron positions across phyla suggests a complex history, with a likely ancestral intronless gene undergoing frequent intron loss and gain, leading to extant intron/exon structures that are highly variable, even among species from the same phylum. Because introns are known to play no regulatory role in this gene and there is no alternative splicing, the structural differences may be interpreted more easily: intron positions, sizes, losses or gains may be more likely related to factors linked to splicing mechanisms and requirements, and to recognition of introns and exons, or to more extrinsic factors, such as life cycle and population size. We have shown that intron losses outnumbered gains in recent periods, but that “resets” of intron positions occurred at the origin of several phyla, including vertebrates. Rates of gain and loss appear to be positively correlated. No phase preference was found. We also found evidence for parallel gains and for intron sliding. Presence of introns at given positions was correlated to a strong protosplice consensus sequence AG/G, which was much weaker in the absence of intron. In contrast, recent intron insertions were not associated with a specific sequence. In animal Amy genes, population size and generation time seem to have played only minor roles in shaping gene structures

    Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese

    Get PDF
    Understanding natural selection is crucial to unveiling evolution of modern humans. Here, we report natural selection signatures in the Japanese population using 2234 high-depth whole-genome sequence (WGS) data (25.9×). Using rare singletons, we identify signals of very recent selection for the past 2000–3000 years in multiple loci (ADH cluster, MHC region, BRAP-ALDH2, SERHL2). In large-scale genome-wide association study (GWAS) dataset (n = 171,176), variants with selection signatures show enrichment in heterogeneity of derived allele frequency spectra among the geographic regions of Japan, highlighted by two major regional clusters (Hondo and Ryukyu). While the selection signatures do not show enrichment in archaic hominin-derived genome sequences, they overlap with the SNPs associated with the modern human traits. The strongest overlaps are observed for the alcohol or nutrition metabolism-related traits. Our study illustrates the value of high-depth WGS to understand evolution and their relationship with disease risk

    Considering Soil Potassium Pools with Dissimilar Plant Availability

    Get PDF
    Soil potassium (K) has traditionally been portrayed as residing in four functional pools: solution K, exchangeable K, interlayer (sometimes referred to as “fixed” or “nonexchangeable”) K, and structural K in primary minerals. However, this four-pool model and associated terminology have created confusion in understanding the dynamics of K supply to plants and the fate of K returned to the soil in fertilizers, residues, or waste products. This chapter presents an alternative framework to depict soil K pools. The framework distinguishes between micas and feldspars as K-bearing primary minerals, based on the presence of K in interlayer positions or three-dimensional framework structures, respectively; identifies a pool of K in neoformed secondary minerals that can include fertilizer reaction products; and replaces the “exchangeable” K pool with a pool defined as “surface-adsorbed” K, identifying where the K is located and the mechanism by which it is held rather than identification based on particular soil testing procedures. In this chapter, we discuss these K pools and their behavior in relation to plant K acquisition and soil K dynamics
    corecore