9 research outputs found

    PTPN22 Silencing in Human Acute T-Cell Leukemia Cell Line (Jurkat Cell) and its Effect on the Expression of miR-181a and miR-181b

    Get PDF
    Purpose: T-cell acute lymphoblastic leukemia (T-ALL) is one of the most common malignancies associated with T-lymphocytes, accounting for 10 to 15 percent of ALL cases in children and 25 percent in adults. Innovative therapeutic approaches that overcome ineffective treatments on tumor cells may be a potential source of improvement in therapeutic approaches. Suppression of gene expression at transfusion level is one of the important strategies in gene therapy. The expression of PTPN22 and miR-181 genes in all types of hematologic malignancies increases and is likely to contribute to the survival and death of cells by affecting a variety of signaling pathways. The purpose of this study was to determine the role of PTPN22 inhibition by siRNA, and alteration in miR-181a and miR-181b in Jurkat cell line. Methods: Jurkat cells were transfected with 80 pmol of siRNA to inhibit PTPN22. After that, expression of PTPN22 mRNA and transcript levels of miR-181a and miR-181b were measured with Real-time PCR after 48hrs. Results: Experiments demonstrated that siRNA transfection resulted in significant downregulation of PTPN22 mRNA after 48 hrs in 80 pmol dose of siRNA. Moreover, transcript levels of both miR-181a and miR-181b was decreased after transfection. Conclusion: PTPN22, miR-181a and miR-181b might be involved in progression of Jurkat cells and targeting these molecules by RNAi might confer promising tool in treatment of T-ALL

    Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy

    Get PDF
    The selective and efficient drug delivery to tumor cells can remarkably improve different cancer therapeutic approaches. There are several nanoparticles (NPs) which can act as a potent drug carrier for cancer therapy. However, the specific drug delivery to cancer cells is an important issue which should be considered before designing new NPs for in vivo application. It has been shown that cancer cells over-express folate receptor (FR) in order to improve their growth. As normal cells express a significantly lower levels of FR compared to tumor cells, it seems that folate molecules can be used as potent targeting moieties in different nanocarrier-based therapeutic approaches. Moreover, there is evidence which implies folate-conjugated NPs can selectively deliver anti-tumor drugs into cancer cells both in vitro and in vivo. In this review, we will discuss about the efficiency of different folate-conjugated NPs in cancer therapy.NoneManuscrip

    The skewed balance between regulatory T cells and Th17 in chronic lymphocytic leukemia

    No full text
    While Tregs maintain self-tolerance and inhibit antitumor responses, T helper (Th)17 cells may enhance inflammatory and antitumor responses. The balance between these two important T-cell subsets has been skewed in many immunopathologic conditions such as autoimmune and cancer diseases. B-cell chronic lymphocytic leukemia (CLL) is the most common form of leukemia in the western world and is characterized with monoclonal expansion of B lymphocytes. There is evidence which implies that the progression of CLL is associated with expansion of Treg and downregulation of Th17 cells. In this review, we will discuss about immunobiology of Treg and Th17 cells and their role in immunopathogenesis of CLL as well as their reciprocal changes during disease progression.Tehran University of Medical Sciences, Tehran, IranManuscrip

    Myeloid-derived suppressor cells in B cell malignancies

    Get PDF
    Tumor cells use several mechanisms such as soluble immune modulators or suppressive immune cells to evade from anti-tumor responses. Immunomodulatory cytokines, such as transforming growth factor-beta, interleukin (IL)-10, and IL-35, soluble factors, such as adenosine, immunosuppressive cells, such as regulatory T cells, NKT cells and myeloid-derived suppressor cells (MDSCs), are the main orchestra leaders involved in immune suppression in cancer by which tumor cells can freely expand without immune cell-mediated interference. Among them, MDSCs have attracted much attention as they represent a heterogenous population derived from myeloid progenitors that are expanded in tumor condition and can also shift toward other myeloid cells, such as macrophages and dendritic cells, after tumor clearing. MDSCs exert their immunosuppressive effects through various immune and non-immune mechanisms which make them as potent tumor-promoting cells. Although, there are several studies regarding the immunobiology of MDSCs in different solid tumors, little is known about the precise characteristics of these cells in hematological malignancies, particularly B cell malignancies. In this review, we tried to clarify the precise role of MDSCs in B cell-derived malignancies

    Myeloid-derived suppressor cells in B cell malignancies

    No full text

    Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy

    No full text
    corecore