41 research outputs found

    The Effect of Thin Film Adhesives on Mode I Interlaminar Fracture Toughness in Carbon Fiber Composites with Shape Memory Alloy Inserts

    Get PDF
    Shape Memory Alloy (SMA) was placed within Polymer Matrix Composite (PMC) panels alongside film adhesives to examine bonding. Double cantilever beam (DCB) testing was performed using ASTM D5528. C-scanning was performed before testing, modal acoustic emissions (MAE) were monitored during testing, and microscopy performed post-test. Data was analyzed using modified beam theory (MBT), compliance calibration (CC) and modified compliance calibration (MCC) methods. Fracture toughness for control specimens was higher than previously reported due to fiber-bridging. Specimens with SMAs and adhesives stabilized crack propagation. Results revealed SMA-bridging; a phenomenon mimicking fiber-bridging which increased the load and fracture toughness of SMA specimens

    The Effect of Thin Film Adhesives on Mode II Interlaminar Fracture Toughness in Carbon Fiber Composites with Shape Memory Alloy Inserts

    Get PDF
    A single sheet of nickel-titanium (NiTi) shape memory alloy (SMA) was introduced within an IM7/8552 polymer matrix composite (PMC) panel in conjunction with multiple thin film adhesives to promote the interfacial bond strength between the SMA and PMC. End notched flexure (ENF) testing was performed in accordance to ASTM D7905 method for evaluation of mode II interlaminar fracture toughness (GIIC) of unidirectional fiber-reinforced polymer matrix composites. Acoustic emissions (AE) were monitored during testing with two acoustic sensors attached to the specimens. The composite panels examined using scanning electron microscopy techniques after part failure. GIIC values for the control composite samples were found to be higher than those of samples with embedded SMA sheets. The presence of adhesives bonded to SMA sheets further diminished the GIIC values. AE values revealed poor bonding of the panels, with little to no signals during testing

    Evaluating Dimethyldiethoxysilane for use in Polyurethane Crosslinked Silica Aerogels

    Get PDF
    Silica aerogels are highly porous materials which exhibit exceptionally low density and thermal conductivity. Their "pearl necklace" nanostructure, however, is inherently weak; most silica aerogels are brittle and fragile. The strength of aerogels can be improved by employing an additional crosslinking step using isocyanates. In this work, dimethyldiethoxysilane (DMDES) is evaluated for use in the silane backbone of polyurethane crosslinked aerogels. Approximately half of the resulting aerogels exhibited a core/shell morphology of hard crosslinked aerogel surrounding a softer, uncrosslinked center. Solid state NMR and scanning electron microscopy results indicate the DMDES incorporated itself as a conformal coating around the outside of the secondary silica particles, in much the same manner as isocyanate crosslinking. Response surface curves were generated from compression data, indicating levels of reinforcement comparable to that in previous literature, despite the core/shell morphology

    Evaluation of Nanoclay Exfoliation Strategies for Thermoset Polyimide Nanocomposite Systems

    Get PDF
    Prior works show exfoliated layered silicate reinforcement improves polymer composite properties. However, achieving full clay exfoliation in high performance thermoset polyimides remains a challenge. This study explores a new method of clay exfoliation, which includes clay intercalation by lower molecular weight PMR monomer under conditions of low and high shear and sonication, clay treatments by aliphatic and aromatic surfactants, and clay dispersion in primary, higher molecular weight PMR resin. Clay spacing, thermal, and mechanical properties were evaluated and compared with the best results available in literature for PMR polyimide systems

    Electrically Conductive Compounds of Polycarbonate, Liquid Crystalline Polymer, and Multiwalled Carbon Nanotubes

    Get PDF
    A thermotropic liquid crystalline polymer (LCP) was blended with polycarbonate (PC) and multiwalled carbon nanotube (CNT) with the goal of improving electrical conductivity and mechanical properties over PC. The LCP was anticipated to produce fibrillar domains in PC and help improve the mechanical properties. The study was carried out using two grades of LCP—Vectra A950 (VA950) and Vectra V400P (V400P). The compounds contained 20 wt% LCP and 0.5 to 15 wt% CNT. The compounds were prepared by melt-blending in a twin-screw minicompounder and then injection molded using a mini-injection molder. The fibrillar domains of LCP were found only in the case of PC/VA950 blend. However, these fibrils turned into droplets in the presence of CNT. It was found that CNT preferentially remained inside the LCP domains as predicted from the value of spreading coefficient. The electrical conductivity showed the following order with the numbers in parenthesis representing the electrical percolation threshold of the compounds: PC/CNT (1%) > PC/VA950P/CNT (1%) > PC/V400P/CNT (3%). The storage modulus showed improvements with the addition of CNT and VA950

    Effect of Thin-Film Adhesives on Mode II Interlaminar Fracture Toughness in Carbon Fiber Composites with Shape Memory Alloy Inserts

    Get PDF
    A single sheet of nickel-titanium (NiTi) shape memory alloy (SMA) was introduced within an IM7/8552 polymer matrix composite (PMC) panel in conjunction with multiple thin film adhesives to promote the interfacial bond strength between the SMA and PMC. End notched flexure (ENF) testing was performed in accordance to ASTM D7905 method for evaluation of mode II interlaminar fracture toughness (GIIC) of unidirectional fiber-reinforced polymer matrix composites. Acoustic emissions (AE) were monitored during testing with two acoustic sensors attached to the specimens. The composite panels were subjected to C-scan before testing, and examined using optical and scanning electron microscopy techniques after part failure. GIIC values for the control composite samples were found to be higher than those of samples with embedded SMA sheets. The presence of adhesives bonded to SMA sheets further diminished the GIIC values. AE values revealed poor bonding of the panels, with little to no signals during testing

    Effect of Thin-Film Adhesives on Mode I Interlaminar Fracture Toughness in Carbon Fiber Composites with Shape Memory Alloy Inserts

    Get PDF
    A single sheet of NiTi shape memory alloy (SMA) was introduced within a unidirectional HexPly 8552/IM7 (Hexcel) polymer matrix composite (PMC) panel in conjunction with multiple thin-film adhesives to promote the interfacial bond strength between the SMA and PMC. A double cantilever beam (DCB) test was performed in accordance with the ASTM D5528 method for evaluation of Mode I interlaminar fracture toughness of unidirectional fiber-reinforced PMCs. The modal acoustic emissions (MAEs) were monitored during testing with two acoustic sensors attached to the specimens. The composite panels were subjected to a C-scan before testing and examined using optical and scanning electron microscopy (SEM) techniques after part failure. The data were used in conjunction with modified beam theory (MBT), the compliance calibration (CC) method, and the modified compliance calibration (MCC) method. The Mode I interlaminar toughness (G(sub IC)) values for control specimens were higher than previously reported and are attributed to extensive fiber bridging during testing. The presence of adhesives with SMA inserts stabilized crack propagation during DCB testing. The results reveal a new phenomenon of SMA bridging, whereby crack propagation would switch from one side of the SMA insert to the other, thus increasing the load and G(sub IC) values of specimens containing SMA

    Aqueous-Phase Synthesis of Silver Nanodiscs and Nanorods in Methyl Cellulose Matrix: Photophysical Study and Simulation of UV–Vis Extinction Spectra Using DDA Method

    Get PDF
    We present a very simple and effective way for the synthesis of tunable coloured silver sols having different morphologies. The procedure is based on the seed-mediated growth approach where methyl cellulose (MC) has been used as soft-template in the growth solution. Nanostructures of varying morphologies as well as colour of the silver sols are controlled by altering the concentration of citrate in the growth solution. Similar to the polymers in the solution, citrate ions also dynamically adsorbed on the growing silver nanoparticles and promote one (1-D) and two-dimensional (2-D) growth of nanoparticles. Silver nanostructures are characterized using UV–vis and HR-TEM spectroscopic study. Simulation of the UV–vis extinction spectra of our synthesized silver nanostructures has been carried out using discrete dipole approximation (DDA) method

    Fabrication of Hollow and Porous Tin-Doped Indium Oxide Nanofibers and Microtubes via a Gas Jet Fiber Spinning Process

    No full text
    We report the morphologies of tin-doped indium oxide (ITO) hollow microtubes and porous nanofibers produced from precursor solutions of polyvinylpyrrolidone (PVP), indium chloride (InCl3), and stannic chloride (SnCl4). The polymer precursor fibers are produced via a facile gas jet fiber (GJF) spinning process and subsequently calcined to produce ITO materials. The morphology shows strong dependence on heating rate in calcination step. Solid porous ITO nanofibers result from slow heating rates while hollow tubular ITO microfibers with porous shells are produced at high heating rates when calcined at a peak temperature of 700 °C. The mechanisms of formation of different morphological forms are proposed. The ITO fibers are characterized using several microscopy tools and thermogravimetric analysis. The concentration of inorganic salts in precursor solution is identified as a key factor in determining the porosity of the shell in hollow fibers. The data presented in this paper show that GJF method may be suitable for fabrication of hollow and multi-tubular metal oxide nanofibers from other inorganic precursor materials

    Composites of carbon nanofibers and thermoplastic polyurethanes with shape-memory properties prepared by chaotic mixing

    No full text
    Composites of carbon nanofibers (CNFs), oxidized car bon nanofibers (ox-CNFs), and shape-memory thermo plastic polyurethane (TPU) were prepared in a chaotic mixer and their shape-memory properties evaluated. The polymer was synthesized from 4,40 -diphenylme thane diisocyanate, 1,4-butanediol chain extender, and semicrystalline poly(e-caprolactone) diol soft segments. The shape-memory action was triggered by both con ductive and resistive heating. It was found that soft segment crystallinity and mechanical reinforcement by nanofibers produced competing effects on shape memory properties. A large reduction in soft segment crystallinity in the presence of CNF and stronger me chanical reinforcement by well-dispersed ox-CNF determined the shape-memory properties of the re spective composites. It was found that the maximum shape recovery force, respectively, 3 and 4 MPa, was obtained in the cases of 5 and 1 wt% CNF and ox-CNF, respectively, compared with 1.8 MPa for unfilled TPU. The degree of soft segment and hard segment phase separation and thermal stability of the composites were analyzed. POLYM. ENG. SCI., 49:2020–2030, 2009. ª 2009 Society of Plastics EngineersSe prepararon compuestos de nanofibras de carbono (CNF), nanofibras de carbono oxidadas (ox-CNF) y poliuretano termoplástico (TPU) con memoria de forma en un mezclador caótico y se evaluaron sus propiedades de memoria de forma. El polímero se sintetizó a partir de 4,40 -diisocianato de difenilmetano, extensor de cadena de 1,4-butanodiol y segmentos blandos de poli(e-caprolactona) diol semicristalino. La acción de la memoria de forma fue desencadenada tanto por el calentamiento conductivo como por el resistivo. Se descubrió que la cristalinidad de los segmentos blandos y el refuerzo mecánico de las nanofibras producían efectos contrapuestos en las propiedades de la memoria de forma. Una gran reducción en la cristalinidad del segmento blando en presencia de CNF y un refuerzo mecánico más fuerte por ox-CNF bien dispersado determinaron las propiedades de memoria de forma de los compuestos respectivos. Se encontró que la fuerza de recuperación de forma máxima, respectivamente, 3 y 4 MPa, se obtuvo en los casos de 5 y 1% en peso de CNF y ox-CNF, respectivamente, en comparación con 1,8 MPa para TPU sin carga. Se analizó el grado de separación de fases del segmento blando y del segmento duro y la estabilidad térmica de los materiales compuestos. POLÍMICO. ESP. SCI., 49:2020–2030, 2009. ª 2009 Sociedad de Ingenieros PlásticosUniversidad Nacional, Costa RicaEscuela de Químic
    corecore