124 research outputs found

    Low Power Data Acquisition System for Bioimplantable Devices

    Get PDF
    Signal acquisition represents the most important block in biomedical devices, because of its responsibilities to retrieve precise data from the biological tissues. In this paper an energy efficient data acquisition unit is presented which includes low power high bandwidth front-end amplifier and a 10-bit fully differential successive approximation ADC. The proposed system is designed with 0.18 ¡m CMOS technology and the simulation results show that the bioamplifier maintains a wide bandwidth versus low noise trade-off and the proposed SAR-ADC consumes 450 nW power under 1.8 V supply and retain the effective number of bit 9.55 in 100 KS/s sampling rate

    HEPATITIS C VIRUS GENOTYPING IN CHRONIC HEPATITIS C PATIENTS

    Get PDF
    Chronic hepatitis C virus infection is a massive worldwide healthcare burden with estimated costs in the USA alone of over $5 billon per annum. The virus has a 9.5kb positive sense single-stranded RNA genome with striking heterogeneity between isolates, which has led to it being divided into 6 genotypes and more than 50 subtypes and many quasispecies that has been arisen due to the infidelity of the viral polymerase, which lacks of a proofreading function. The virus exists as a range of related but not identical species at the quasispecies. In each infected individual, HCV circulates as a quasispecies in which the population consists of a number of closely related but distinct genetic species. The distribution of the genotype might be influenced by the mode of transmission and racial group. The only current effective treatment is combination therapy with pegylated interferon plus ribavirin (peg-IFNΞ± + RBV) for 24–48 weeks based for genotypes 1 and 4 is 48 weeks, whereas the treatment for genotypes 2 and 3 is completed in 24 weeks. It has proved effective in up to 50% of those infected with HCV genotype 1 and 4 and it varies with other genotypes. HCV genotype is consider to be a clinically important parameter for determining both; the potential response and the duration of treatment.

    A homozygous p.Glu150Lys mutation in the opsin gene of two Pakistani families with autosomal recessive retinitis pigmentosa

    Get PDF
    PURPOSE: To identify the gene mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in Pakistani families. METHODS: A cohort of consanguineous families with typical RP phenotype in patients was screened by homozygosity mapping using microsatellite markers that mapped close to 21 known arRP genes and five arRP loci. Mutation analysis was performed by direct sequencing of the candidate gene. RESULTS: In two families, RP21 and RP53, homozygosity mapping suggested RHO, the gene encoding rhodopsin, as a candidate disease gene on chromosome 3q21. In six out of seven affected members from the two families, direct sequencing of RHO identified a homozygous c.448G>A mutation resulting in the p.Glu150Lys amino acid change. This variant was first reported in PMK197, an Indian arRP family. Single nucleotide polymorphism analysis in RP21, RP53, and PMK197 showed a common disease-associated haplotype in the three families. CONCLUSIONS: In two consanguineous Pakistani families with typical arRP phenotype in the patients, we identified a disease-causing mutation (p.Glu150Lys) in the RHO gene. Single nucleotide polymorphism analysis suggests that the previously reported Indian family (PMK197) and the two Pakistani families studied here share the RHO p.Glu150Lys mutation due to a common ancestry

    Novel CNGA3 and CNGB3 mutations in two Pakistani families with achromatopsia

    Get PDF
    PURPOSE: To identify the genetic defect in two Pakistani families with autosomal recessive achromatopsia. METHODS: Two families (RP26 and RP44) were originally diagnosed with retinal dystrophy based upon their medical history. To localize the causative genes in these families, homozygosity mapping was performed using Affymetrix 10K single nucleotide polymorphism (SNP) arrays. Sequence analysis was used to find the mutations in candidate genes cyclic nucleotide-gated channel alpha-3 (CNGA3; family RP26) and cyclic nucleotide-gated channel beta-3 (CNGB3; family RP44). Control individuals were analyzed by allele-specific PCR for the CNGA3 mutation and BstXI restriction analysis for the CNGB3 mutation. After genetic analysis, clinical diagnosis was re-evaluated by electroretinography and color vision testing. During the course of this study, selected affected members of family RP26 were given pink glasses as supportive therapy. RESULTS: Sequence analysis of the positional candidate genes identified a novel missense mutation in CNGA3 (c.822G>T; p.R274S) in family RP26, and a novel CNGB3 frameshift mutation (c.1825delG; p.V609WfsX9) in family RP44. Clinical re-evaluation after genetic analysis revealed that both families have segregating autosomal recessive achromatopsia. CONCLUSIONS: Genetic analysis of two Pakistani families with retinal disease enabled the establishment of the correct diagnosis of achromatopsia. Two novel mutations were identified in CNGA3 and CNGB3 that are both specifically expressed in cone photoreceptors. Re-evaluation of the clinical status revealed that both families had achromatopsia. The use of pink glasses in patients was helpful in reducing photophobia and enabled rod-mediated vision

    Association between the number of coadministered P-glycoprotein inhibitors and serum digoxin levels in patients on therapeutic drug monitoring

    Get PDF
    BACKGROUND: The ABC transporter P-glycoprotein (P-gp) is recognized as a site for drug-drug interactions and provides a mechanistic explanation for clinically relevant pharmacokinetic interactions with digoxin. The question of whether several P-gp inhibitors may have additive effects has not yet been addressed. METHODS: We evaluated the effects on serum concentrations of digoxin (S-digoxin) in 618 patients undergoing therapeutic drug monitoring. P-gp inhibitors were classified as Class I, with a known effect on digoxin kinetics, or Class II, showing inhibition in vitro but no documented effect on digoxin kinetics in humans. Mean S-digoxin values were compared between groups of patients with different numbers of coadministered P-gp inhibitors by a univariate and a multivariate model, including the potential covariates age, sex, digoxin dose and total number of prescribed drugs. RESULTS: A large proportion (47%) of the digoxin patients undergoing therapeutic drug monitoring had one or more P-gp inhibitor prescribed. In both univariate and multivariate analysis, S-digoxin increased in a stepwise fashion according to the number of coadministered P-gp inhibitors (all P values < 0.01 compared with no P-gp inhibitor). In multivariate analysis, S-digoxin levels were 1.26 Β± 0.04, 1.51 Β± 0.05, 1.59 Β± 0.08 and 2.00 Β± 0.25 nmol/L for zero, one, two and three P-gp inhibitors, respectively. The results were even more pronounced when we analyzed only Class I P-gp inhibitors (1.65 Β± 0.07 for one and 1.83 Β± 0.07 nmol/L for two). CONCLUSIONS: Polypharmacy may lead to multiple drug-drug interactions at the same site, in this case P-gp. The S-digoxin levels increased in a stepwise fashion with an increasing number of coadministered P-gp inhibitors in patients taking P-gp inhibitors and digoxin concomitantly. As coadministration of digoxin and P-gp inhibitors is common, it is important to increase awareness about P-gp interactions among prescribing clinicians

    Dual Hypocretin Receptor Antagonism Is More Effective for Sleep Promotion than Antagonism of Either Receptor Alone

    Get PDF
    The hypocretin (orexin) system is involved in sleep/wake regulation, and antagonists of both hypocretin receptor type 1 (HCRTR1) and/or HCRTR2 are considered to be potential hypnotic medications. It is currently unclear whether blockade of either or both receptors is more effective for promoting sleep with minimal side effects. Accordingly, we compared the properties of selective HCRTR1 (SB-408124 and SB-334867) and HCRTR2 (EMPA) antagonists with that of the dual HCRTR1/R2 antagonist almorexant in the rat. All 4 antagonists bound to their respective receptors with high affinity and selectivity in vitro. Since in vivo pharmacokinetic experiments revealed poor brain penetration for SB-408124, SB-334867 was selected for subsequent in vivo studies. When injected in the mid-active phase, SB-334867 produced small increases in rapid-eye-movement (REM) and non-REM (NR) sleep. EMPA produced a significant increase in NR only at the highest dose studied. In contrast, almorexant decreased NR latency and increased both NR and REM proportionally throughout the subsequent 6 h without rebound wakefulness. The increased NR was due to a greater number of NR bouts; NR bout duration was unchanged. At the highest dose tested (100 mg/kg), almorexant fragmented sleep architecture by increasing the number of waking and REM bouts. No evidence of cataplexy was observed. HCRTR1 occupancy by almorexant declined 4–6 h post-administration while HCRTR2 occupancy was still elevated after 12 h, revealing a complex relationship between occupancy of HCRT receptors and sleep promotion. We conclude that dual HCRTR1/R2 blockade is more effective in promoting sleep than blockade of either HCRTR alone. In contrast to GABA receptor agonists which induce sleep by generalized inhibition, HCRTR antagonists seem to facilitate sleep by reducing waking β€œdrive”

    In Vivo Methods to Study Uptake of Nanoparticles into the Brain

    Get PDF
    Several in vivo techniques have been developed to study and measure the uptake of CNS compounds into the brain. With these techniques, various parameters can be determined after drug administration, including the blood-to-brain influx constant (Kin), the permeability-surface area (PS) product, and the brain uptake index (BUI). These techniques have been mostly used for drugs that are expected to enter the brain via transmembrane diffusion or by carrier-mediated transcytosis. Drugs that have limitations in entering the brain via such pathways have been encapsulated in nanoparticles (based on lipids or synthetic polymers) to enhance brain uptake. Nanoparticles are different from CNS compounds in size, composition and uptake mechanisms. This has led to different methods and approaches to study brain uptake in vivo. Here we discuss the techniques generally used to measure nanoparticle uptake in addition to the techniques used for CNS compounds. Techniques include visualization methods, behavioral tests, and quantitative methods
    • …
    corecore