3,746 research outputs found

    Unfinished Business: a Review of the Implementation of the Provisions of United Nations General Assembly Resolutions 61/105 and 64/72, Related to the Management of Bottom Fisheries in Areas Beyond National Jurisdiction

    Get PDF
    In 2006 the General Assembly adopted resolution 61/105, based on a compromise proposal offered by deep-sea fishing nations, which committed States and regional fisheries management organisations [RFMOs] to take specific measures to protect vulnerable marine ecosystems [VMEs] from the adverse impacts of bottom fisheries in the high seas and to ensure the longterm sustainability of deep-sea fish stocks. These measures included conducting impact assessments to determine whether significant adverse impacts[SAIs] to VMEs would occur, managing fisheries to prevent SAIs on VMEs, and closing areas of the high seas to bottom fishing where VMEs are known or likely to occur, unless regulations are in place to prevent SAIs and to manage sustainably deep-sea fish stocks. Based on a review in 2009 of the actions taken by States and RFMOS, the UNGA adoptedresolution 64/72 that reaffirmed resolution 61/105 and strengthened the call for action through committing States, inter alia, to ensure that vessels do not engage in bottom fishing until impact assessments have been carried out and to not authorise bottom fishing activities until the measures in resolutions 64/72 and 61/105 have been adopted andimplemented

    Crystallization and melting of bacteria colonies and Brownian Bugs

    Get PDF
    Motivated by the existence of remarkably ordered cluster arrays of bacteria colonies growing in Petri dishes and related problems, we study the spontaneous emergence of clustering and patterns in a simple nonequilibrium system: the individual-based interacting Brownian bug model. We map this discrete model into a continuous Langevin equation which is the starting point for our extensive numerical analyses. For the two-dimensional case we report on the spontaneous generation of localized clusters of activity as well as a melting/freezing transition from a disordered or isotropic phase to an ordered one characterized by hexagonal patterns. We study in detail the analogies and differences with the well-established Kosterlitz-Thouless-Halperin-Nelson-Young theory of equilibrium melting, as well as with another competing theory. For that, we study translational and orientational correlations and perform a careful defect analysis. We find a non standard one-stage, defect-mediated, transition whose nature is only partially elucidated.Comment: 13 Figures. 14 pages. Submitted to Phys. Rev.

    The Quantum Mellin transform

    Get PDF
    We uncover a new type of unitary operation for quantum mechanics on the half-line which yields a transformation to ``Hyperbolic phase space''. We show that this new unitary change of basis from the position x on the half line to the Hyperbolic momentum pηp_\eta, transforms the wavefunction via a Mellin transform on to the critial line s=1/2ipηs=1/2-ip_\eta. We utilise this new transform to find quantum wavefunctions whose Hyperbolic momentum representation approximate a class of higher transcendental functions, and in particular, approximate the Riemann Zeta function. We finally give possible physical realisations to perform an indirect measurement of the Hyperbolic momentum of a quantum system on the half-line.Comment: 23 pages, 6 Figure

    Structure determination of PF3 adsorption on Cu(100) using X-ray standing waves

    Get PDF
    The local structure of the Cu(100)c(4x2)-PF3 adsorption phase has been investigated through the use of normal-incidence X-ray standing waves (NIXSW), monitored by P 1s and F 1s photoemission, together with P K-edge near-edge X-ray absorption fine structure (NEXAFS). NEXAFS shows the molecule to be oriented with its C3v symmetry axis essentially perpendicular to the surface, while the P NIXSW data show the molecule to be adsorbed in atop sites 2.37±0.04 Å above the surface, this distance corresponding to the Cu-P nearest-neighbour distance in the absence of any surface relaxation. F NIXSW indicates a surprisingly small height difference of the P and F atoms above the surface 0.44±0.06 Å, compared with the value expected for an undistorted gas-phase geometry of 0.77 Å, implying significant increases in the F-P-F bond angles. In addition, however, the F NIXSW data indicate that the molecules have a well-defined azimuthal orientation with a molecular mirror plane aligned in a substrate mirror plane, and with a small (5-10°) tilt of the molecule in this plane such that the two symmetrically-equivalent F atoms in each molecule are tilted down towards the surface

    The reaction γpπγp\gamma p \to \pi^\circ \gamma^\prime p and the magnetic dipole moment of the Δ+(1232)\Delta^+(1232) resonance

    Full text link
    The reaction γpπγp\gamma p \to \pi^\circ \gamma^\prime p has been measured with the TAPS calorimeter at the Mainz Microtron accelerator facility MAMI for energies between s\sqrt{s} = 1221--1331 MeV. Cross sections differential in angle and energy have been determined for all particles in the final state in three bins of the excitation energy. This reaction channel provides access to the magnetic dipole moment of the Δ+(1232)\Delta^{+}(1232) resonance and, for the first time, a value of μΔ+=(2.71.3+1.0(stat.)±1.5(syst.)±3(theo.))μN\mu_{\Delta^+} = (2.7_{-1.3}^{+1.0}(stat.) \pm 1.5 (syst.) \pm 3(theo.)) \mu_N has been extracted

    In-medium modifications of the ππ\pi\pi interaction in photon-induced reactions

    Full text link
    Differential cross sections of the reactions (γ,ππ)(\gamma,\pi^\circ\pi^\circ) and (γ,ππ++ππ)(\gamma,\pi^\circ\pi^++\pi^\circ\pi^-) have been measured for several nuclei (1^1H,12^{12}C, and nat^{\rm nat}Pb) at an incident-photon energy of EγE_{\gamma}=400-460 MeV at the tagged-photon facility at MAMI-B using the TAPS spectrometer. A significant nuclear-mass dependence of the ππ\pi\pi invariant-mass distribution is found in the ππ\pi^\circ\pi^\circ channel. This dependence is not observed in the ππ+/\pi^\circ\pi^{+/-} channel and is consistent with an in-medium modification of the ππ\pi\pi interaction in the II=JJ=0 channel. The data are compared to π\pi-induced measurements and to calculations within a chiral-unitary approach

    Photoproduction of eta-mesic 3He

    Full text link
    The photoproduction of eta-mesic 3He has been investigated using the TAPS calorimeter at the Mainz Microtron accelerator facility MAMI. The total inclusive cross section for the reaction gamma+3He->eta+X has been measured for photon energies from threshold to 820 MeV. The total and angular differential coherent eta cross sections have been extracted up to energies of 745 MeV. A resonance-like structure just above the eta production threshold with an isotropic angular distribution suggests the existence of a resonant quasi-bound state. This is supported by studies of a competing decay channel of such a quasi-bound eta-mesic nucleus into pi^0+p+X. A binding energy of (-4.4+-4.2) MeV and a width of (25.6+-6.1) MeV is deduced for the quasi-bound eta-mesic state in 3He.Comment: v1: 4 pages, 4 figures, submitted to PRL; v2: minor revisions and corrections, new figure added, 4 pages, 5 figs; v3: minor change

    DEFAULT MODE NETWORK AND WORKING MEMORY NETWORK DURING AN FMRI WORKING MEMORY TASK: DIFFERENCES AND CORRELATIONS WITH BEHAVIORAL PERFORMANCE

    Get PDF
    INTRODUCTION Previous neuroimaging studies have shown that working memory load has marked effects on regional neural activation[1-5]. However, the mechanism through which working memory load modulates brain connectivity is still unclear. During a working memory task, two of the most involved networks are the default mode network (DMN) and the working memory network (WMN)[6-7]: the selective focus on these networks can be useful in better understanding the load effects. Spatial independent component analysis (ICA)[8] has becomes a reliable technique to investigate the networks involved during an fMRI task, as it extracts spatiotemporal patterns of neural activity maximizing spatial independence. A specific study, conducted with ICA, investigating on how the load and phase of a working memory task are related with the activation and response time, is nowadays lacking. The aim of this work is to use the time course of DMN and WMN, selected by means of ICA, for studying: a) how these networks are involved with the complexity of the task and the phase; b) how, in these networks, complexity and phase are correlated with reaction times. METHODS MR Data Acquisition and preprocessing Fifteen young adult healthy and right-handed were involved. The MR protocol consisted of one anatomical sequence 3D T1-weighted MP-RAGE (Voxel size: 1 x 1 x 1 mm) and three functional acquisitions of 15 minutes each performed with a T2*-weighted EPI sequence (TR/TE: 1500/30, In- plane resolution: 3.5x3.5 mm, Thickness: 3.5 mm, Nr of slices: 24, Field of view: 64 x 64 mm). All the images were collected with a Siemens Allegra 3T MR scanner (Siemens, Erlangen, Germany) and a standard head coil. During the fMRI acquisition the subjects performed a delayed spatial working memory paradigm presented with three levels of difficulty. The memory set consisted of one, three or five circles presented randomly in different locations and to the subjects were asked to judge whether or not a given target stimulus had been part of a previous memory stimulus set. Every experiment consisted of 90 working memory trials, 30 per load, divided in three runs. Data were analyzed with Brain Voyager QX. 2.4 (Brain Innovation, Maastricht, The Netherlands). FMRI preprocessing included: 3D head-motion correction, slice-scan time correction, spatial smoothing, temporal high pass filter and linear trend removal. Anatomic 3D data set was inhomogeneities corrected, filtered and transformed into Talairach coordinates and coregistered with the functional information. Independent Component Analysis This analysis was conducted using Brainvoyager QX 2.4. ICA analysis was performed on each subject\u2019s three functional acquisitions. A subsequent total ICA group analysis[9-10] was achieved by an inter- subject ICA group analysis of all the intra-subject ICA group analysis. From the obtained maps were selected two Independent Components (ICs) containing the WMN[1,2]: WMN1 defined by SPL and Precuneus, and WMN2 with DLPFC and IPS (Fig. 1b-c). Also one IC describing the DMN was considered, with PCC, IPL and MPFC (Fig. 1a)[11]. For each run of all the subjects the ICs time course was considered: three time windows of 3TR (4.5s) for each working memory task phase (encode, maintenance and retrieval) were selected taking into account the haemodynamic response by delaying the window of 5 volumes events from the start of every trial. The window time course was corrected for a baseline value. Mean values of the ICs where examined and a subsequent correlation between the mean values and the response time in every trial was estimated. A 3x3 two-way ANOVA on Fisher transformed correlation was conducted to test the variation of loads (load1=less complex, load3=more complex), phases and runs. Figure 1: Networks selected from ICA analysis (transversal view): (a) DMN, (b) WMN1 (c) WMN2. RESULTS Figure 2 exhibits window mean activities and correlations divided for phase and load. DMN mean activity is negative while WMN1-2 mean activities have opposite behaviors regarding the phase, but similar concerning with the complexity (Fig. 2a-c). DMN shows a reduction of the correlation from encode to retrieval, instead of WM1-2 where it grows (Fig. 2d-f). The ANOVA showed significant variation for the phases over all the subjects in WMN1-2, an interaction of the variation of phases and runs in WMN2 and a interaction of phases, runs and loads in DMN. DISCUSSION These findings suggest that working memory networks (WMNs), as isolated by means of IC A, display substantially opposed mean values related to a different areas specialization. WMN1 seems to be more involved in the first part of the mnemonic phase and the amount of this involvement is associated to the trial: the more complicated the task, the higher the activation with respect to baseline. On the other hand, WMN2 increases from the first to the last part of the trial and is probably more involved in the operation of retrieval. In Figure 2e-f it is also shown that in the retrieval there is a stronger correlation between WMN1-2 mean values and the response time probably because this phase is the more complex. DMN exhibits, over all the phases, smaller than zero mean values (due to the task inducted deactivation). In contrast, its correlation has a different trend and increases above zero during the maintenance, probably due to the free thought of this phase. The different behavior of load 3 is probably due to the fact that this type of complexity is totally different from the other two. In conclusion, this study shows that, by means of ICA, it is possible to isolate networks of connected regions and relate their time courses to task phases and behavioral performance. This is a promising approach to advance the understanding of connectivity modulations in several brain networks, including WMNs and DMN

    Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation

    Get PDF
    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8-12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles
    corecore