1,291 research outputs found
Microwave tunable laser source: A stable, precision tunable heterodyne local oscillator
The development and capabilities of a tunable laser source utilizing a wideband electro-optic modulator and a CO2 laser are described. The precision tunability and high stability of the device are demonstrated with examples of laboratory spectroscopy. Heterodyne measurements are also presented to demonstrate the performance of the laser source as a heterodyne local oscillator. With the use of five CO2 isotope lasers and the 8 to 18 GHz sideband offset tunability of the modulator, calculations indicate that 50 percent spectral coverage in the 9 to 12 micron region is achievable. The wavelength accuracy and stability of this laser source is limited by the CO2 laser and is more than adequate for the measurement of narrow Doppler-broadened line profiles. The room-temperature operating capability and the programmability of the microwave tunable laser source are attractive features for its in-the-field implementation. Although heterodyne measurements indicated some S/N degradation when using the device as a local oscillator, there does not appear to be any fundamental limitation to the heterodyne efficiency of this laser source. Through the use of a lower noise-figure traveling wave tube amplifier and optical matching of the output beam with the photomixer, a substantial increase in the heterodyne S/N is expected
Summary of 1978 Southeastern Virginia Urban Plume study: Aircraft results for carbon monoxide, methane, nonmethane hydrocarbons, and ozone
The characteristics of the Southeastern Virginia urban plume were defined with emphasis on the photon-oxidant species. The measurement area was a rectangle, approximately 150 km by 100 km centered around Cape Charles, Virginia. Included in this area are the cities of Norfolk, Virginia Beach, Chesapeake, Newport News, and Hampton. The area is bounded on the north by Wallops Island, Virginia, and on the south by the Hampton Roads area of Tidewater Virginia. The major axis of the rectangle is oriented in the southwest-northeast direction. The data set includes aircraft measurements for carbon monoxide, methane, nonmethane hydrocarbons, and ozone. The experiment shows that CO can be successfully measured as a tracer gas and used as an index for determining localized and urban plumes. The 1978 data base provided sufficient data to assess an automated chromatograph with flame ionization detection used for measuring methane and nonmethane hydrocarbons in flight
In situ evidence for renitrification in the Arctic lower stratosphere during the polar aura validation experiment (PAVE)
In-situ measurements of nitric acid (HNO3), ozone (O3), and nitrous oxide (N2O) were made from the NASA DC-8 during the Polar Aura Validation Experiment in January/February 2005. In the lower stratosphere (9–12.5 km, potential temperature 300–350 K) characteristic compact relationships were observed between all three gases. The ratio HNO3/O3 averaged 3.5 (±0.7) ppt/ppb. Samples with enhanced HNO3/O3 (\u3e4.0) were most abundant under the edge of the Arctic Polar vortex in airmasses with enhanced mixing ratios of both gases (\u3e400 ppb O3 and \u3e2000 ppt HNO3) and reduced mixing ratios of N2O (\u3c305 ppb), indicating air from higher levels in the stratosphere. Relationships to N2O in the anomalous samples under the vortex edge indicate that increases in HNO3/O3 reflect renitrification at DC-8 flight levels, with no indication of significant O3 loss. Renitrified air was only observed at potential temperatures above 340 K, and was most abundant on the PAVE flights on 27 and 29 January
Puckering Free Energy of Pyranoses: an NMR and Metadynamics--Umbrella Sampling Investigation
We present the results of a combined metadynamics--umbrella sampling
investigation of the puckered conformers of pyranoses described using the
gromos 45a4 force field. The free energy landscape of Cremer--Pople puckering
coordinates has been calculated for the whole series of alpha and beta
aldohexoses, showing that the current force field parameters fail in
reproducing proper puckering free energy differences between chair conformers.
We suggest a modification to the gromos 45a4 parameter set which improves
considerably the agreement of simulation results with theoretical and
experimental estimates of puckering free energies. We also report on the
experimental measurement of altrose conformers populations by means of NMR
spectroscopy, which show good agreement with the predictions of current
theoretical models
Constraints on the age and dilution of Pacific Exploratory Mission-Tropics biomass burning plumes from the natural radionuclide tracer 210Pb
During the NASA Global Troposphere Experiment Pacific Exploratory Mission-Tropics (PEM-Tropics) airborne sampling campaign we found unexpectedly high concentrations of aerosol-associated 210Pb throughout the free troposphere over the South Pacific. Because of the remoteness of the study region, we expected specific activities to be generally less than 35 μBq m−3 but found an average in the free troposphere of 107 μBq m−3. This average was elevated by a large number of very active (up to 405 μBq m−3) samples that were associated with biomass burning plumes encountered on nearly every PEM-Tropics flight in the southern hemisphere. We use a simple aging and dilution model, which assumes that 222Rn and primary combustion products are pumped into the free troposphere in wet convective systems over fire regions (most likely in Africa), to explain the elevated 210Pb activities. This model reproduces the observed 210Pb activities very well, and predicts the ratios of four hydrocarbon species (emitted by combustion) to CO to better than 20% in most cases. Plume ages calculated by the model depend strongly on the assumed 222Rn activities in the initial plume, but using values plausible for continental boundary layer air yields ages that are consistent with travel times from Africa to the South Pacific calculated with a back trajectory model. The model also shows that despite being easily recognized through the large enhancements of biomass burning tracers, these plumes must have entrained large fractions of the surrounding ambient air during transport
Recommended from our members
Assessment of upper tropospheric HOx sources over the tropical Pacific based on NASA GTE/PEM data: Net effect on HOx and other photochemical parameters
Data for the tropical upper troposphere (8-12 km, 20° N-20° S) collected during NASA's Pacific Exploratory Missions have been used to carry out a detailed examination of the photochemical processes controlling HOx (OH+HO2). Of particular significance is the availability of measurements of nonmethane hydrocarbons, oxygenated hydrocarbons (i.e., acetone, methanol, and ethanol) and peroxides (i.e., H2O2 and CH3OOH). These observations have provided constraints on model calculations permitting an assessment of the potential impact of these species on the levels of HOx, CH3O2, CH2O, as well as ozone budget parameters. Sensitivity calculations using a time-dependent photochemical box model show that when constrained by measured values of the above oxygenated species, model estimated HOx levels are elevated relative to unconstrained calculations. The impact of constraining these species was found to increase with altitude, reflecting the systematic roll-off in water vapor mixing ratios with altitude. At 11-12 km, overall increases in HOx approached a factor of 2 with somewhat larger increases being found for gross and net photochemical production of ozone. While significant, the impact on HOx due to peroxides appears to be less than previously estimated. In particular, observations of elevated H2O2 levels may be more influenced by local photochemistry than by convective transport. Issues related to the uncertainty in high-altitude water vapor levels and the possibility of other contributing sources of HOx are discussed. Finally, it is noted that the uncertainties in gas kinetic rate coefficients at the low temperatures of the upper troposphere and as well as OH sensor calibrations should be areas of continued investigation. Copyright 1999 by the American Geophysical Union
Recommended from our members
O-3, NOY, AND NOX/NOY IN THE UPPER TROPOSPHERE OF THE EQUATORIAL PACIFIC
Impact of multiscale dynamical processes and mixing on the chemical composition of the upper troposphere and lower stratosphere during the Intercontinental Chemical Transport Experiment–North America
We use high-frequency in situ observations made from the DC8 to examine fine-scale tracer structure and correlations observed in the upper troposphere and lower stratosphere during INTEX-NA. Two flights of the NASA DC-8 are compared and contrasted. Chemical data from the DC-8 flight on 18 July show evidence for interleaving and mixing of polluted and stratospheric air masses in the vicinity of the subtropical jet in the upper troposphere, while on 2 August the DC-8 flew through a polluted upper troposphere and a lowermost stratosphere that showed evidence of an intrusion of polluted air. We compare data from both flights with RAQMS 3-D global meteorological and chemical model fields to establish dynamical context and to diagnose processes regulating the degree of mixing on each day. We also use trajectory mapping of the model fields to show that filamentary structure due to upstream strain deformation contributes to tracer variability observed in the upper troposphere. An Eulerian measure of strain versus rotation in the large-scale flow is found useful in predicting filamentary structure in the vicinity of the jet. Higher-frequency (6–24 km) tracer variability is attributed to buoyancy wave oscillations in the vicinity of the jet, whose turbulent dissipation leads to efficient mixing across tracer gradients
- …