361 research outputs found

    Null Geodesic Congruences, Asymptotically Flat Space-Times and Their Physical Interpretation

    Get PDF
    Shear-free or asymptotically shear-free null geodesic congruences possess a large number of fascinating geometric properties and to be closely related, in the context of general relativity, to a variety of physically significant affects. It is the purpose of this paper to develop these issues and find applications in GR. The applications center around the problem of extracting interior physical properties of an asymptotically flat space-time directly from the asymptotic gravitational (and Maxwell) field itself in analogy with the determination of total charge by an integral over the Maxwell field at infinity or the identification of the interior mass (and its loss) by (Bondi's) integrals of the Weyl tensor, also at infinity. More specifically we will see that the asymptotically shear-free congruences lead us to an asymptotic definition of the center-of-mass and its equations of motion. This includes a kinematic meaning, in terms of the center of mass motion, for the Bondi three-momentum. In addition, we obtain insights into intrinsic spin and, in general, angular momentum, including an angular momentum conservation law with well-defined flux terms. When a Maxwell field is present the asymptotically shear-free congruences allow us to determine/define at infinity a center-of-charge world-line and intrinsic magnetic dipole moment.Comment: 98 pages, 6 appendices. v2: typos corrected; v3: significant changes made to results section using simpler arguments, added discussion of real structures, additional references, 2 new appendice

    Three-dimensional printing of porous load-bearing bioceramic scaffolds

    Get PDF
    This article reports on the use of the binder jetting three-dimensional printing process combined with sintering to process bioceramic materials to form micro- and macroporous three-dimensional structures. Three different glass-ceramic formulations, apatite–wollastonite and two silicate-based glasses, have been processed using this route to create porous structures which have Young’s modulus equivalent to cortical bone and average bending strengths in the range 24–36 MPa. It is demonstrated that a range of macroporous geometries can be created with accuracies of ±0.25 mm over length scales up to 40 mm. Hot-stage microscopy is a valuable tool in the definition of processing parameters for the sintering step of the process. Overall, it is concluded that binder jetting followed by sintering offers a versatile process for the manufacture of load-bearing bioceramic components for bone replacement applications

    Mosquito Abundance, Bed net Coverage and Other Factors Associated with Variations in Sporozoite Infectivity Rates in Four Villages of Rural Tanzania.

    Get PDF
    Entomological surveys are of great importance in decision-making processes regarding malaria control strategies because they help to identify associations between vector abundance both species-specific ecology and disease intervention factors associated with malaria transmission. Sporozoite infectivity rates, mosquito host blood meal source, bed net coverage and mosquito abundance were assessed in this study. A longitudinal survey was conducted in four villages in two regions of Tanzania. Malaria vectors were sampled using the CDC light trap and pyrethrum spray catch methods. In each village, ten paired houses were selected for mosquitoes sampling. Sampling was done in fortnight case and study was undertaken for six months in both Kilimanjaro (Northern Tanzania) and Dodoma (Central Tanzania) regions. A total of 6,883 mosquitoes were collected including: 5,628 (81.8%) Anopheles arabiensis, 1,100 (15.9%) Culex quinquefasciatus, 89 (1.4%) Anopheles funestus, and 66 (0.9%) Anopheles gambiae s.s. Of the total mosquitoes collected 3,861 were captured by CDC light trap and 3,022 by the pyrethrum spray catch method. The overall light trap: spray catch ratio was 1.3:1. Mosquito densities per room were 96.5 and 75.5 for light trap and pyrethrum spray catch respectively. Mosquito infectivity rates between villages that have high proportion of bed net owners and those without bed nets was significant (P < 0.001) and there was a significant difference in sporozoite rates between households with and without bed nets in these four villages (P < 0.001). Malaria remains a major problem in the study areas characterized as low transmission sites. Further studies are required to establish the annual entomological inoculation rates and to observe the annual parasitaemia dynamics in these communities. Outdoor mosquitoes collection should also be considered

    Set Pseudophasors to Stun for Flow Cytometry

    Get PDF
    Study of signal transduction in live cells benefits from the ability to visualize and quantify light emitted by fluorescent proteins (XFPs) fused to different signaling proteins. However, because cell signaling proteins are often present in small numbers, and because the XFPs themselves are poor fluorophores, the amount of emitted light, and the observable signal in these studies, is often small. An XFP's fluorescence lifetime contains additional information about the immediate environment of the fluorophore that can augment the information from its weak light signal. Here, we constructed and expressed in Saccharomyces cerevisiae variants of Teal Fluorescent Protein (TFP) and Citrine that were isospectral but had shorter fluorescence lifetimes, ∼ 1.5 ns vs ∼ 3 ns. We modified microscopic and flow cytometric instruments to measure fluorescence lifetimes in live cells. We developed digital hardware and a measure of lifetime called a "pseudophasor" that we could compute quickly enough to permit sorting by lifetime in flow. We used these abilities to sort mixtures of cells expressing TFP and the short-lifetime TFP variant into subpopulations that were respectively 97% and 94% pure. This work demonstrates the feasibility of using information about fluorescence lifetime to help quantify cell signaling in living cells at the high throughput provided by flow cytometry. Moreover, it demonstrates the feasibility of isolating and recovering subpopulations of cells with different XFP lifetimes for subsequent experimentation

    Maximum Entropy Reconstructions of Dynamic Signaling Networks from Quantitative Proteomics Data

    Get PDF
    Advances in mass spectrometry among other technologies have allowed for quantitative, reproducible, proteome-wide measurements of levels of phosphorylation as signals propagate through complex networks in response to external stimuli under different conditions. However, computational approaches to infer elements of the signaling network strictly from the quantitative aspects of proteomics data are not well established. We considered a method using the principle of maximum entropy to infer a network of interacting phosphotyrosine sites from pairwise correlations in a mass spectrometry data set and derive a phosphorylation-dependent interaction network solely from quantitative proteomics data. We first investigated the applicability of this approach by using a simulation of a model biochemical signaling network whose dynamics are governed by a large set of coupled differential equations. We found that in a simulated signaling system, the method detects interactions with significant accuracy. We then analyzed a growth factor mediated signaling network in a human mammary epithelial cell line that we inferred from mass spectrometry data and observe a biologically interpretable, small-world structure of signaling nodes, as well as a catalog of predictions regarding the interactions among previously uncharacterized phosphotyrosine sites. For example, the calculation places a recently identified tumor suppressor pathway through ARHGEF7 and Scribble, in the context of growth factor signaling. Our findings suggest that maximum entropy derived network models are an important tool for interpreting quantitative proteomics data

    High sensitivity (1)H-NMR spectroscopy of homeopathic remedies made in water

    Get PDF
    BACKGROUND: The efficacy of homeopathy is controversial. Homeopathic remedies are made via iterated shaking and dilution, in ethanol or in water, from a starting substance. Remedies of potency 12 C or higher are ultra-dilute (UD), i.e. contain zero molecules of the starting material. Various hypotheses have been advanced to explain how a UD remedy might be different from unprepared solvent. One such hypothesis posits that a remedy contains stable clusters, i.e. localized regions where one or more hydrogen bonds remain fixed on a long time scale. High sensitivity proton nuclear magnetic resonance spectroscopy has not previously been used to look for evidence of differences between UD remedies and controls. METHODS: Homeopathic remedies made in water were studied via high sensitivity proton nuclear magnetic resonance spectroscopy. A total of 57 remedy samples representing six starting materials and spanning a variety of potencies from 6 C to 10 M were tested along with 46 controls. RESULTS: By presaturating on the water peak, signals could be reliably detected that represented H-containing species at concentrations as low as 5 μM. There were 35 positions where a discrete signal was seen in one or more of the 103 spectra, which should theoretically have been absent from the spectrum of pure water. Of these 35, fifteen were identified as machine-generated artifacts, eight were identified as trace levels of organic contaminants, and twelve were unexplained. Of the unexplained signals, six were seen in just one spectrum each. None of the artifacts or unexplained signals occurred more frequently in remedies than in controls, using a p < .05 cutoff. Some commercially prepared samples were found to contain traces of one or more of these small organic molecules: ethanol, acetate, formate, methanol, and acetone. CONCLUSION: No discrete signals suggesting a difference between remedies and controls were seen, via high sensitivity (1)H-NMR spectroscopy. The results failed to support a hypothesis that remedies made in water contain long-lived non-dynamic alterations of the H-bonding pattern of the solvent

    Histidine Hydrogen-Deuterium Exchange Mass Spectrometry for Probing the Microenvironment of Histidine Residues in Dihydrofolate Reductase

    Get PDF
    Histidine Hydrogen-Deuterium Exchange Mass Spectrometry (His-HDX-MS) determines the HDX rates at the imidazole C(2)-hydrogen of histidine residues. This method provides not only the HDX rates but also the pK(a) values of histidine imidazole rings. His-HDX-MS was used to probe the microenvironment of histidine residues of E. coli dihydrofolate reductase (DHFR), an enzyme proposed to undergo multiple conformational changes during catalysis.Using His-HDX-MS, the pK(a) values and the half-lives (t(1/2)) of HDX reactions of five histidine residues of apo-DHFR, DHFR in complex with methotrexate (DHFR-MTX), DHFR in complex with MTX and NADPH (DHFR-MTX-NADPH), and DHFR in complex with folate and NADP+ (DHFR-folate-NADP+) were determined. The results showed that the two parameters (pK(a) and t(1/2)) are sensitive to the changes of the microenvironment around the histidine residues. Although four of the five histidine residues are located far from the active site, ligand binding affected their pK(a), t(1/2) or both. This is consistent with previous observations of ligand binding-induced distal conformational changes on DHFR. Most of the observed pK(a) and t(1/2) changes could be rationalized using the X-ray structures of apo-DHFR, DHFR-MTX-NADPH, and DHFR-folate-NADP+. The availability of the neutron diffraction structure of DHFR-MTX enabled us to compare the protonation states of histidine imidazole rings.Our results demonstrate the usefulness of His-HDX-MS in probing the microenvironments of histidine residues within proteins

    Decoding the regulatory network of early blood development from single-cell gene expression measurements.

    Get PDF
    Reconstruction of the molecular pathways controlling organ development has been hampered by a lack of methods to resolve embryonic progenitor cells. Here we describe a strategy to address this problem that combines gene expression profiling of large numbers of single cells with data analysis based on diffusion maps for dimensionality reduction and network synthesis from state transition graphs. Applying the approach to hematopoietic development in the mouse embryo, we map the progression of mesoderm toward blood using single-cell gene expression analysis of 3,934 cells with blood-forming potential captured at four time points between E7.0 and E8.5. Transitions between individual cellular states are then used as input to develop a single-cell network synthesis toolkit to generate a computationally executable transcriptional regulatory network model of blood development. Several model predictions concerning the roles of Sox and Hox factors are validated experimentally. Our results demonstrate that single-cell analysis of a developing organ coupled with computational approaches can reveal the transcriptional programs that underpin organogenesis.We thank J. Downing (St. Jude Children's Research Hospital, Memphis, TN, USA) for the Runx1-ires-GFP mouse. Research in the authors' laboratory is supported by the Medical Research Council, Biotechnology and Biological Sciences Research Council, Leukaemia and Lymphoma Research, the Leukemia and Lymphoma Society, Microsoft Research and core support grants by the Wellcome Trust to the Cambridge Institute for Medical Research and Wellcome Trust - MRC Cambridge Stem Cell Institute. V.M. is supported by a Medical Research Council Studentship and Centenary Award and S.W. by a Microsoft Research PhD Scholarship.This is the accepted manuscript for a paper published in Nature Biotechnology 33, 269–276 (2015) doi:10.1038/nbt.315
    • …
    corecore