25 research outputs found

    Copy Number Variants in Extended Autism Spectrum Disorder Families Reveal Candidates Potentially Involved in Autism Risk

    Get PDF
    Copy number variations (CNVs) are a major cause of genetic disruption in the human genome with far more nucleotides being altered by duplications and deletions than by single nucleotide polymorphisms (SNPs). In the multifaceted etiology of autism spectrum disorders (ASDs), CNVs appear to contribute significantly to our understanding of the pathogenesis of this complex disease. A unique resource of 42 extended ASD families was genotyped for over 1 million SNPs to detect CNVs that may contribute to ASD susceptibility. Each family has at least one avuncular or cousin pair with ASD. Families were then evaluated for co-segregation of CNVs in ASD patients. We identified a total of five deletions and seven duplications in eleven families that co-segregated with ASD. Two of the CNVs overlap with regions on 7p21.3 and 15q24.1 that have been previously reported in ASD individuals and two additional CNVs on 3p26.3 and 12q24.32 occur near regions associated with schizophrenia. These findings provide further evidence for the involvement of ICA1 and NXPH1 on 7p21.3 in ASD susceptibility and highlight novel ASD candidates, including CHL1, FGFBP3 and POUF41. These studies highlight the power of using extended families for gene discovery in traits with a complex etiology

    Evidence of novel finescale structural variation at autism spectrum disorder candidate loci

    Get PDF
    Background: Autism spectrum disorders (ASD) represent a group of neurodevelopmental disorders characterized by a core set of social-communicative and behavioral impairments. Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, acting primarily via the GABA receptors (GABR). Multiple lines of evidence, including altered GABA and GABA receptor expression in autistic patients, indicate that the GABAergic system may be involved in the etiology of autism. Methods: As copy number variations (CNVs), particularly rare and de novo CNVs, have now been implicated in ASD risk, we examined the GABA receptors and genes in related pathways for structural variation that may be associated with autism. We further extended our candidate gene set to include 19 genes and regions that had either been directly implicated in the autism literature or were directly related (via function or ancestry) to these primary candidates. For the high resolution CNV screen we employed custom-designed 244 k comparative genomic hybridization (CGH) arrays. Collectively, our probes spanned a total of 11 Mb of GABA-related and additional candidate regions with a density of approximately one probe every 200 nucleotides, allowing a theoretical resolution for detection of CNVs of approximately 1 kb or greater on average. One hundred and sixty-eight autism cases and 149 control individuals were screened for structural variants. Prioritized CNV events were confirmed using quantitative PCR, and confirmed loci were evaluated on an additional set of 170 cases and 170 control individuals that were not included in the original discovery set. Loci that remained interesting were subsequently screened via quantitative PCR on an additional set of 755 cases and 1,809 unaffected family members. Results: Results include rare deletions in autistic individuals at JAKMIP1, NRXN1, Neuroligin4Y, OXTR, and ABAT. Common insertion/deletion polymorphisms were detected at several loci, including GABBR2 and NRXN3. Overall, statistically significant enrichment in affected vs. unaffected individuals was observed for NRXN1 deletions. Conclusions: These results provide additional support for the role of rare structural variation in ASD

    Development of international consensus recommendations using a modified Delphi approach

    Get PDF
    Funding Information: This work was supported by BioMarin Pharmaceutical Inc . Funding Information: The content of this manuscript was based on preparatory pre-meeting activities and presentations and discussions during two advisory board meetings that were coordinated and funded by BioMarin Pharmaceutical Inc. All authors or their institutions received funding from BioMarin to attend at least one or both meetings. Additional disclosures: BKB received consulting payments from BioMarin, Shire, Genzyme, Alexion, Horizon Therapeutics, Denali Therapeutics, JCR Pharma, Moderna, Aeglea BioTherapeutics, SIO Gene Therapies, Taysha Gene Therapy, Ultragenyx, and Inventiva Pharma, participated as clinical trial investigator for BioMarin, Shire, Denali Therapeutics, Homology Medicines, Ultragenyx, and Moderna as well as received speaker fees from BioMarin, Shire, Genzyme, and Horizon Therapeutics. AH received consulting payments from BioMarin, Chiesi, Shire, Genzyme, Amicus, and Ultragenyx, participated as clinical trial investigator for Ultragenyx as well as received speaker fees from Alexion, Amicus, BioMarin, Genzyme, Nutricia, Sobi, and Takeda. ABQ received consulting payments from BioMarin, speaker fees from BioMarin, Nutricia, Vitaflo, Sanofi, Takeda, Recordati, and travel support from Vitaflo . SEC received consulting payments and speaker fees from BioMarin as well as consulting payments from Synlogic Therapeutics. COH was clinical trial investigator for BioMarin and received consulting and speaker payments from BioMarin. SCJH received consulting payments and travel support from BioMarin and Homology Medicines. NL received consulting payments from Alnylam, Amicus, Astellas, BioMarin, BridgeBio, Chiesi, Genzyme/Sanofi, HemoShear, Horizon Therapeutics, Jaguar, Moderna, Nestle, PTC Therapeutics, Reneo, Shire, Synlogic, and Ultragenyx, participated as clinical trial investigator for Aeglea, Amicus, Astellas, BioMarin, Genzyme/Sanofi, Homology, Horizon, Moderna, Pfizer, Protalix, PTC Therapeutics, Reneo, Retrophin/Travere therapeutics, Shire, and Ultragenyx, as well as received speaker fees from Cycle Pharmaceuticals, Leadiant and Recordati. MCM II received consulting payments from BioMarin, Horizon Therapeutics, Rhythm Pharmaceuticals, Applied Therapeutics, Cycle Therapeutics, and Ultragenyx. ALSP received speaker fees from BioMarin. JCR received consulting payments from Applied Pharma Research, Merck Serono, BioMarin, Vitaflo, and Nutricia, speaker fees from Applied Pharma Research, Merck Serono, BioMarin Pharmaceutical, Vitaflo, Cambrooke, PIAM, LifeDiet, and Nutricia, as well as travel support from Applied Pharma Research, Merck Serono, BioMarin, Vitaflo, Cambrooke, PIAM, and Nutricia. SS received consulting payments, research grants, speaker fees, and travel support from BioMarin and participated as clinical trials investigator for BioMarin. ASV received consulting payments from BioMarin, Horizon Therapeutics, and Ultragenyx and participated as clinical trial investigator for Acadia, Alexion, BioMarin, Genzyme, Homology Medicines, Kaleido, Mallinckrodt, and Ultragenyx. JV received consulting payments from BioMarin, LogicBio Pharmaceuticals, Sangamo Therapeutics, Orphan Labs, Synlogic Therapeutics, Sanofi, Axcella Health, Agios Pharmaceuticals, and Applied Therapeutics as well as travel grants from BioMarin and LogicBio Pharmaceuticals. MW received consulting payments, speaker fees, and travel support from BioMarin, and participated as clinical trial investigator for Mallinckrodt, Roche, Wave, Cycle Therapeutics, and Intrabio. ACM participated in strategic advisory boards and received honoraria as a consultant and as a speaker for Merck Serono, BioMarin, Nestlé Health Science (SHS), Applied Pharma Research, Actelion, Retrophin, Censa, PTC Therapeutics, and Arla Food. Funding Information: Ideally, access to (neuro)psychological/psychiatric support should assist adolescents with identifying, understanding, and reporting of PKU-specific challenges (Table 3), offering individualized recommendations on managing these challenges. Although there is no replacement for mental health services for patients with identified needs, psychosocial support from PKU peers, e.g., through PKU camps, virtual social events, etc., can at least in the short-term help to improve metabolic control by providing individuals an opportunity to participate in supportive PKU-related educational activities potentially reducing perceived social isolation [91]. In addition to PKU camps, which may be very specific to certain regions or countries, HCPs should consider encouraging involvement in local, regional, national and international PKU patient/family advocacy and social support organizations, introducing adolescents and young adults to national/international patient registries [92,93]. Besides support from PKU peers, patients can benefit from non-PKU peer support, although some adolescents and young adults with PKU may not disclose to others and may avoid eating in with others or eating in public due to potential feelings of anxiety or feelings of being ashamed of their disease. In addition, patients with PKU of all ages, but particularly vulnerable adolescents and young adults, can benefit from having the opportunity to learn about and practice strategies that help promote feelings of empowerment and self-efficacy that can be used in both familiar and unfamiliar environments where they may experience peer pressure and feel the need to ‘fit in’. For example, a role-play approach involving behavioral rehearsal, self-monitoring, goal setting, and training in problem-solving skills with emphasis on initiation and inhibition (i.e., how to say no) could be provided by parents, PKU peers, or even members of the PKU team. These types of activities can be used to teach adolescents with PKU how to react in social situations, such as dining out, helping to avoid indulging and increased risk-taking behavior, a hallmark of the adolescent period [94].This work was supported by BioMarin Pharmaceutical Inc.The content of this manuscript was based on preparatory pre-meeting activities and presentations and discussions during two advisory board meetings that were coordinated and funded by BioMarin Pharmaceutical Inc. All authors or their institutions received funding from BioMarin to attend at least one or both meetings. Additional disclosures: BKB received consulting payments from BioMarin, Shire, Genzyme, Alexion, Horizon Therapeutics, Denali Therapeutics, JCR Pharma, Moderna, Aeglea BioTherapeutics, SIO Gene Therapies, Taysha Gene Therapy, Ultragenyx, and Inventiva Pharma, participated as clinical trial investigator for BioMarin, Shire, Denali Therapeutics, Homology Medicines, Ultragenyx, and Moderna as well as received speaker fees from BioMarin, Shire, Genzyme, and Horizon Therapeutics. AH received consulting payments from BioMarin, Chiesi, Shire, Genzyme, Amicus, and Ultragenyx, participated as clinical trial investigator for Ultragenyx as well as received speaker fees from Alexion, Amicus, BioMarin, Genzyme, Nutricia, Sobi, and Takeda. ABQ received consulting payments from BioMarin, speaker fees from BioMarin, Nutricia, Vitaflo, Sanofi, Takeda, Recordati, and travel support from Vitaflo. SEC received consulting payments and speaker fees from BioMarin as well as consulting payments from Synlogic Therapeutics. COH was clinical trial investigator for BioMarin and received consulting and speaker payments from BioMarin. SCJH received consulting payments and travel support from BioMarin and Homology Medicines. NL received consulting payments from Alnylam, Amicus, Astellas, BioMarin, BridgeBio, Chiesi, Genzyme/Sanofi, HemoShear, Horizon Therapeutics, Jaguar, Moderna, Nestle, PTC Therapeutics, Reneo, Shire, Synlogic, and Ultragenyx, participated as clinical trial investigator for Aeglea, Amicus, Astellas, BioMarin, Genzyme/Sanofi, Homology, Horizon, Moderna, Pfizer, Protalix, PTC Therapeutics, Reneo, Retrophin/Travere therapeutics, Shire, and Ultragenyx, as well as received speaker fees from Cycle Pharmaceuticals, Leadiant and Recordati. MCM II received consulting payments from BioMarin, Horizon Therapeutics, Rhythm Pharmaceuticals, Applied Therapeutics, Cycle Therapeutics, and Ultragenyx. ALSP received speaker fees from BioMarin. JCR received consulting payments from Applied Pharma Research, Merck Serono, BioMarin, Vitaflo, and Nutricia, speaker fees from Applied Pharma Research, Merck Serono, BioMarin Pharmaceutical, Vitaflo, Cambrooke, PIAM, LifeDiet, and Nutricia, as well as travel support from Applied Pharma Research, Merck Serono, BioMarin, Vitaflo, Cambrooke, PIAM, and Nutricia. SS received consulting payments, research grants, speaker fees, and travel support from BioMarin and participated as clinical trials investigator for BioMarin. ASV received consulting payments from BioMarin, Horizon Therapeutics, and Ultragenyx and participated as clinical trial investigator for Acadia, Alexion, BioMarin, Genzyme, Homology Medicines, Kaleido, Mallinckrodt, and Ultragenyx. JV received consulting payments from BioMarin, LogicBio Pharmaceuticals, Sangamo Therapeutics, Orphan Labs, Synlogic Therapeutics, Sanofi, Axcella Health, Agios Pharmaceuticals, and Applied Therapeutics as well as travel grants from BioMarin and LogicBio Pharmaceuticals. MW received consulting payments, speaker fees, and travel support from BioMarin, and participated as clinical trial investigator for Mallinckrodt, Roche, Wave, Cycle Therapeutics, and Intrabio. ACM participated in strategic advisory boards and received honoraria as a consultant and as a speaker for Merck Serono, BioMarin, Nestlé Health Science (SHS), Applied Pharma Research, Actelion, Retrophin, Censa, PTC Therapeutics, and Arla Food. Publisher Copyright: © 2022 The AuthorsBackground: Early treated patients with phenylketonuria (PKU) often become lost to follow-up from adolescence onwards due to the historical focus of PKU care on the pediatric population and lack of programs facilitating the transition to adulthood. As a result, evidence on the management of adolescents and young adults with PKU is limited. Methods: Two meetings were held with a multidisciplinary international panel of 25 experts in PKU and comorbidities frequently experienced by patients with PKU. Based on the outcomes of the first meeting, a set of statements were developed. During the second meeting, these statements were voted on for consensus generation (≥70% agreement), using a modified Delphi approach. Results: A total of 37 consensus recommendations were developed across five areas that were deemed important in the management of adolescents and young adults with PKU: (1) general physical health, (2) mental health and neurocognitive functioning, (3) blood Phe target range, (4) PKU-specific challenges, and (5) transition to adult care. The consensus recommendations reflect the personal opinions and experiences from the participating experts supported with evidence when available. Overall, clinicians managing adolescents and young adults with PKU should be aware of the wide variety of PKU-associated comorbidities, initiating screening at an early age. In addition, management of adolescents/young adults should be a joint effort between the patient, clinical center, and parents/caregivers supporting adolescents with gradually gaining independent control of their disease during the transition to adulthood. Conclusions: A multidisciplinary international group of experts used a modified Delphi approach to develop a set of consensus recommendations with the aim of providing guidance and offering tools to clinics to aid with supporting adolescents and young adults with PKU.publishersversionpublishe

    Use of pegvaliase in the management of phenylketonuria: Case series of early experience in US clinics

    Get PDF
    Objective: To present a case series that illustrates real-world use of pegvaliase based on the initial experiences of US healthcare providers. Methods: Sixteen healthcare providers from 14 centers across the US with substantial clinical experience in treating patients with phenylketonuria (PKU) with pegvaliase in the two-plus years since FDA approval (May 2018) provided cases that exemplified important lessons from their initial experiences treating patients with pegvaliase. Key lessons from each case and takeaway points were discussed in both live and virtual meetings. Results: Fifteen cases of adults with PKU (eight males, seven females), representing a spectrum of age (18 to 53 years), previous PKU care, comorbidities, and socioeconomic situations were reviewed and discussed. Full extended case reports are included in the Supplement. The cases showed that treating patients with a daily injectable can be challenging due to a patient's financial problems, treatment challenges, and neuropsychological and psychiatric comorbidities, which can be identified before starting pegvaliase, but do not prohibit successful treatment. The authors agreed that patient education on adverse events (AEs), time to efficacy, dietary changes, and food preparation is an ongoing process that should start prior to initiating pegvaliase treatment. Treatment goals and planned dietary changes once efficacy is reached should be defined prior to treatment initiation and re-evaluated throughout the course of therapy. Each patient's titration schedule and dietary adjustments are unique, depending on occurrence of AEs and individual goals of treatment. Despite the AE profile of pegvaliase, all but two patients remained motivated to continue treatment and achieved efficacy (except one patient in whom titration was still ongoing). AEs occurring early in the treatment pathway may require prolongation of the titration phase and/or concomitant medication use, but do not seem indicative of future tolerability or eventual efficacy. Close follow-up of patients during titration and maintenance to help with dietary changes is important. Conclusion: This case series provides real-world experience on the use of pegvaliase. Until data from registries and independent research become available, the data presented herein can support appropriate management of patients receiving pegvaliase in clinical practice

    Expanded newborn screening in Puerto Rico and the US Virgin Islands: education and barriers assessment

    No full text
    The implementation of the expanded newborn screening panel of 29 disorders recommended by the American College of Medical Genetics in Puerto Rico and United States Virgin Islands is still in development or in early stages. Efforts in the territories are complicated by educational and resource barriers that generate a wide gap between the islands and the US mainland. To meet immediate educational needs, we conducted in-services for local newborn screening professionals. The efficacy of the educational intervention was measured by pre and posttest scores and a seminar evaluation. An assessment was obtained to document local newborn screening needs and barriers, with focus on human resources, intervention, language, social issues, education, and communication. Statistical significance was found (P value < or =0.05) between pre and posttest scores of the educational intervention. Needs and barriers associated with expanded newborn screening were also documented. Puerto Rico and United States Virgin Islands face different challenges in their implementation of expanded newborn screening. The data obtained in the present study serves as foundation for the development of public policy and long-term educational programs

    Frequent detection of parental consanguinity in children with developmental disorders by a combined CGH and SNP microarray

    Get PDF
    BACKGROUND: Genomic microarrays have been used as the first-tier cytogenetic diagnostic test for patients with developmental delay/intellectual disability, autism spectrum disorders and/or multiple congenital anomalies. The use of SNP arrays has revealed regions of homozygosity in the genome which can lead to identification of uniparental disomy and parental consanguinity in addition to copy number variations. Consanguinity is associated with an increased risk of birth defects and autosomal recessive disorders. However, the frequency of parental consanguinity in children with developmental disabilities is unknown, and consanguineous couples may not be identified during doctor’s visit or genetic counseling without microarray. RESULTS: We studied 607 proband pediatric patients referred for developmental disorders using a 4 × 180 K array containing both CGH and SNP probes. Using 720, 360, 180, and 90 Mb as the expected sizes of homozygosity for an estimated coefficient of inbreeding (F) 1/4, 1/8, 1/16, 1/32, parental consanguinity was detected in 21cases (3.46%). CONCLUSION: Parental consanguinity is not uncommon in children with developmental problems in our study population, and can be identified by use of a combined CGH and SNP chromosome microarray. Identification of parental consanguinity in such cases can be important for further diagnostic testing

    Characterization of a novel variant in siblings with Asparagine Synthetase Deficiency.

    No full text
    Asparagine Synthetase Deficiency (ASD) is a recently described inborn error of metabolism caused by bi-allelic pathogenic variants in the asparagine synthetase (ASNS) gene. ASD typically presents congenitally with microcephaly and severe, often medically refractory, epilepsy. Development is generally severely affected at birth. Tone is abnormal with axial hypotonia and progressive appendicular spasticity. Hyperekplexia has been reported. Neuroimaging typically demonstrates gyral simplification, abnormal myelination, and progressive cerebral atrophy. The present report describes two siblings from consanguineous parents with a homozygous Arg49Gln variant associated with a milder form of ASD that is characterized by later onset of symptoms. Both siblings had a period of normal development before onset of seizures, and development regression. Primary fibroblast studies of the siblings and their parents document that homozygosity for Arg49Gln blocks cell growth in the absence of extracellular asparagine. Functional studies with these cells suggest no impact of the Arg49Gln variant on basal ASNS mRNA or protein levels, nor on regulation of the gene itself. Molecular modelling of the ASNS protein structure indicates that the Arg49Gln variant lies near the substrate binding site for glutamine. Collectively, the results suggest that the Arg49Gln variant affects the enzymatic function of ASNS. The clinical, cellular, and molecular observations from these siblings expand the known phenotypic spectrum of ASD
    corecore