109 research outputs found

    Shoes

    Get PDF
    First Place Essay Prompt: In Justice, Sandel discusses a number of contemporary political issues (e.g. price gouging during the 2004 Hurricane, the 2008-9 financial meltdown, the volunteer army, pregnancy surrogates, executive pay, slavery reparations, immigration, and gay marriage). Take a position on one of the issues discussed in the book and make the best case that you can for why this position is the most just. You may include evidence from the book, your prior studies, your own experience, and/or outside research. (Outside research is not required.

    Hollow Fiber and Nanofiber Membranes in Bioartificial Liver and Neuronal Tissue Engineering.

    Get PDF
    To date, the creation of biomimetic devices for the regeneration and repair of injured or diseased tissues and organs remains a crucial challenge in tissue engineering. Membrane technology offers advanced approaches to realize multifunctional tools with permissive environments well-controlled at molecular level for the development of functional tissues and organs. Membranes in fiber configuration with precisely controlled, tunable topography, and physical, biochemical, and mechanical cues, can direct and control the function of different kinds of cells toward the recovery from disorders and injuries. At the same time, fiber tools also provide the potential to model diseases in vitro for investigating specific biological phenomena as well as for drug testing. The purpose of this review is to present an overview of the literature concerning the development of hollow fibers and electrospun fiber membranes used in bioartificial organs, tissue engineered constructs, and in vitro bioreactors. With the aim to highlight the main biomedical applications of fiber-based systems, the first part reviews the fibers for bioartificial liver and liver tissue engineering with special attention to their multifunctional role in the long-term maintenance of specific liver functions and in driving hepatocyte differentiation. The second part reports the fiber-based systems used for neuronal tissue applications including advanced approaches for the creation of novel nerve conduits and in vitro models of brain tissue. Besides presenting recent advances and achievements, this work also delineates existing limitations and highlights emerging possibilities and future prospects in this field

    Monitoring the impact of bioaugmentation with a PAH-degrading strain on different soil microbiomes using pyrosequencing

    Get PDF
    The effect of bioaugmentation with Sphingobium sp. AM strain on different soils microbiomes, pristine soil (PS), chronically contaminated soil (IPK) and recently contaminated soil (Phe) and their implications in bioremediation efficiency was studied by focusing on the ecology that drives bacterial communities in response to inoculation. AM strain draft genome codifies genes for metabolism of aromatic and aliphatic hydrocarbons. In Phe, the inoculation improved the elimination of phenanthrene during the whole treatment, whereas in IPK no improvement of degradation of any PAH was observed. Through the pyrosequencing analysis, we observed that inoculation managed to increase the richness and diversity in both contaminated microbiomes, therefore, independently of PAH degradation improvement, we observed clues of inoculant establishment, suggesting it may use other resources to survive. On the other hand, the inoculation did not influence the bacterial community of PS. On both contaminated microbiomes, incubation conditions produced a sharp increase on Actinomycetales and Sphingomonadales orders, while inoculation caused a relative decline of Actinomycetales. Inoculation of most diverse microbiomes, PS and Phe, produced a coupled increase of Sphingomonadales, Burkholderiales and Rhizobiales orders, although it may exist a synergy between those genera; our results suggest that this would not be directly related to PAH degradation.Facultad de Ciencias ExactasCentro de Investigación y Desarrollo en Fermentaciones Industriale

    Monitoring the impact of bioaugmentation with a PAH-degrading strain on different soil microbiomes using pyrosequencing

    Get PDF
    The effect of bioaugmentation with Sphingobium sp. AM strain on different soils microbiomes, pristine soil (PS), chronically contaminated soil (IPK) and recently contaminated soil (Phe) and their implications in bioremediation efficiency was studied by focusing on the ecology that drives bacterial communities in response to inoculation. AM strain draft genome codifies genes for metabolism of aromatic and aliphatic hydrocarbons. In Phe, the inoculation improved the elimination of phenanthrene during the whole treatment, whereas in IPK no improvement of degradation of any PAH was observed. Through the pyrosequencing analysis, we observed that inoculation managed to increase the richness and diversity in both contaminated microbiomes, therefore, independently of PAH degradation improvement, we observed clues of inoculant establishment, suggesting it may use other resources to survive. On the other hand, the inoculation did not influence the bacterial community of PS. On both contaminated microbiomes, incubation conditions produced a sharp increase on Actinomycetales and Sphingomonadales orders, while inoculation caused a relative decline of Actinomycetales. Inoculation of most diverse microbiomes, PS and Phe, produced a coupled increase of Sphingomonadales, Burkholderiales and Rhizobiales orders, although it may exist a synergy between those genera; our results suggest that this would not be directly related to PAH degradation.Facultad de Ciencias ExactasCentro de Investigación y Desarrollo en Fermentaciones Industriale

    Insights into the mechanisms of desiccation resistance of the Patagonian PAH-degrading strain Sphingobium sp. 22B

    Get PDF
    Aim: To analyze the physiological response of Sphingobium sp. 22B to water stress. Methods and results:The strain was grown under excess of carbon source and then submitted to low (60RH) and high (18RH) water stress conditions for 96 h. Quantification of trehalose, glycogen, polyhydroxybutyrate (PHB), and transmission electron microscopy (TEM) was studied. Genes linked with desiccation were searched in Sphingobium sp. 22B and Sphingomonas "sensu latu" genomes and their transcripts were quantified by Real-Time PCR. Results showed that, in absence of water stress, strain 22B accumulated 4.76± 1.41% of glycogen, 0.84± 1.62% of trehalose and 44.9± 6.4% of PHB per cellular dry weight. Glycogen and trehalose were mobilized in water stresses conditions, this mobilization was significantly higher in 60RH in comparison to 18RH. Gene treY was upregulated 6-fold change in 60RH relative to 18RH. TEM and quantification of PHB revealed that PHB was mobilized under 60RH condition accompanied by the downregulation of the phbB gene. TEM images showed an extracellular amorphous matrix in 18RH and 60RH. Major differences were found in the presence of aqpZ and trehalose genes between strain 22B and Sphingomonas genomes. Conclusion: Strain 22B showed a carbon conservative metabolism capable of accumulation of three types of endogenous carbon sources. The strain responds to water stress by changing the expression pattern of genes related with desiccation, formation of an extracellular amorphous matrix and mobilization of the carbon sources according to the degree of water stress. Trehalose, glycogen and PHB may have multiple functions in different degrees of desiccation. The robust endowment of molecular responses to desiccation shown in Sphingobium sp. 22B could explain its survival in semiarid soil.Significance and Impact of the studyUnderstanding the physiology implicated in the toleration of the PAH-degrading strain Sphingobium sp 22B to environmental desiccation may improve the bioaugmentation technologies in semiarid hydrocarbons contaminated soils.Centro de Investigación y Desarrollo en Fermentaciones Industriale

    Insights into the mechanisms of desiccation resistance of the Patagonian PAH-degrading strain Sphingobium sp. 22B

    Get PDF
    AimTo analyze the physiological response of Sphingobium sp. 22B to water stress.Methods and resultsThe strain was grown under excess of carbon source and then submitted to low (60RH) and high (18RH) water stress conditions for 96 h. Quantification of trehalose, glycogen, polyhydroxybutyrate (PHB), and transmission electron microscopy (TEM) was studied. Genes linked with desiccation were searched in Sphingobium sp. 22B and Sphingomonas ?sensu latu? genomes and their transcripts were quantified by Real-Time PCR. Results showed that, in absence of water stress, strain 22B accumulated 4.76± 1.41% of glycogen, 0.84± 1.62% of trehalose and 44.9± 6.4% of PHB per cellular dry weight. Glycogen and trehalose were mobilized in water stresses conditions, this mobilization was significantly higher in 60RH in comparison to 18RH. Gene treY was upregulated 6-fold change in 60RH relative to 18RH. TEM and quantification of PHB revealed that PHB was mobilized under 60RH condition accompanied by the downregulation of the phbB gene. TEM images showed an extracellular amorphous matrix in 18RH and 60RH. Major differences were found in the presence of aqpZ and trehalose genes between strain 22B and Sphingomonas genomes.ConclusionStrain 22B showed a carbon conservative metabolism capable of accumulation of three types of endogenous carbon sources. The strain responds to water stress by changing the expression pattern of genes related with desiccation, formation of an extracellular amorphous matrix and mobilization of the carbon sources according to the degree of water stress. Trehalose, glycogen and PHB may have multiple functions in different degrees of desiccation. The robust endowment of molecular responses to desiccation shown in Sphingobium sp. 22B could explain its survival in semiarid soil.Significance and Impact of the studyUnderstanding the physiology implicated in the toleration of the PAH-degrading strain Sphingobium sp 22B to environmental desiccation may improve the bioaugmentation technologies in semiarid hydrocarbons contaminated soils.Fil: Madueño, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Coppotelli, Bibiana Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Festa, Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Alvarez, H. M.. Universidad Nacional de la Patagonia "San Juan Bosco". Instituto de Biociencias de la Patagonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biociencias de la Patagonia; ArgentinaFil: Morelli, Irma Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentin

    Assessing interactions, predicting function, and increasing degradation potential of a PAH-degrading bacterial consortium by effect of an inoculant strain

    Get PDF
    A natural phenanthrene-degrading consortium CON was inoculated with an exogenous strain Sphingobium sp. (ex Sp. paucimobilis) 20006FA yielding the consortium called I-CON, in order to study ecological interactions into the bacterial community. DGGE and proteomic profiles and analyses by HTS (High-Throughput Sequencing) technologies demonstrated inoculant establishment and changes on CON composition. Inoculation increased degradation efficiency in I-CON and prevented intermediate HNA accumulation. This could be explained not only by the inoculation, but also by enrichment in Achromobacter genus at expense of a decrease in Klebsiella genus. After inoculation, cooperation between Sphingobium and Achromobacter genera were improved, thereby, some competition could have been generated, and as a consequence, species in minor proportion (cheaters), as Inquilinus sp. and Luteibacter sp., were not detected. Sequences of Sphingobium (corresponding to the inoculated strain) did not vary. PICRUSt predicted a network with bacterial phylotypes connected with enzymes, showing functional redundancy in the phenanthrene pathway, with exception of the first enzymes biphenyl-2,3-diol 1,2-dioxygenase and protocatechuate 4,5-dioxygenase that were only encoded in Sphingobium sp. This is the first report where a natural consortium that has been characterized by HTS technologies is inoculated with an exogenous strain in order to study competitiveness and interactions.Fil: Macchi, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Festa, Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Vega Vela, Nelson E.. Pontificia Universidad Javeriana; Colombia. Universidad de Bogotá Jorge Tadeo Lozano; ColombiaFil: Morelli, Irma Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Coppotelli, Bibiana Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentin

    Integrating Shotgun Metagenomics, 16s Rrna Gene Metabarcoding and Culture Approaches: A Better Outlook for Functional Profiling of a Pah-Contaminated Soil

    Get PDF
    Understanding bacterial diversity and function is critical for designing bioremediation strategies. This research aimed to assess chronically hydrocarbon contaminated soil bacterial diversity and their aromatic compound degradation (ACD) potential by integrating shotgun metagenomic, 16S rRNA gene metabarcoding and culture approaches. While soil metabarcoding showed dominance of Proteobacteria, metagenomics indicated that 99,5% of the sequences were taxonomically assigned to Streptomycetales order and that almost all genes related to ACD were assigned to the latter. To inspect other phyla contribution to ACD, a functional prediction was delved, and two culture approaches were used. PICRUSt2 revealed that ACD pathways were mostly found in Alphaproteobacteria, Actinobacteria and Gammaproteobacteria classes. An enrichment culture (r-EFP) was obtained with pyrene as sole carbon and energy source and a bacterial strain (S19P6), identified as a member of Mycolicibacterium genus, was isolated. Both cultures demonstrated the ability to degrade more than 90% of the supplemented pyrene after 21 days of incubation. 16S rRNA gene metabarcoding and shotgun metagenomics approaches in r-EFP indicated predominance of Proteobacteria Phylum and the presence of genes responsible for the degradation of ACD mostly assigned to the predominant phyla. Complementing different methodologies enable the recognition of the metabolic potential of soil Proteobacteria related to ACD.Fil: Festa, Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Granada, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Irazoqui, José Matías. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Rafaela; ArgentinaFil: Cuadros Orellana, Sara. Universidad Catolica de Maule; ChileFil: Quevedo, Claudio. Universidad Catolica de Maule; ChileFil: Coppotelli, Bibiana Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Morelli, Irma Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentin

    Clinical assessment of the TechArm system on visually impaired and blind children during uni- and multi-sensory perception tasks

    Get PDF
    We developed the TechArm system as a novel technological tool intended for visual rehabilitation settings. The system is designed to provide a quantitative assessment of the stage of development of perceptual and functional skills that are normally vision-dependent, and to be integrated in customized training protocols. Indeed, the system can provide uni- and multisensory stimulation, allowing visually impaired people to train their capability of correctly interpreting non-visual cues from the environment. Importantly, the TechArm is suitable to be used by very young children, when the rehabilitative potential is maximal. In the present work, we validated the TechArm system on a pediatric population of low-vision, blind, and sighted children. In particular, four TechArm units were used to deliver uni- (audio or tactile) or multi-sensory stimulation (audio-tactile) on the participant's arm, and subject was asked to evaluate the number of active units. Results showed no significant difference among groups (normal or impaired vision). Overall, we observed the best performance in tactile condition, while auditory accuracy was around chance level. Also, we found that the audio-tactile condition is better than the audio condition alone, suggesting that multisensory stimulation is beneficial when perceptual accuracy and precision are low. Interestingly, we observed that for low-vision children the accuracy in audio condition improved proportionally to the severity of the visual impairment. Our findings confirmed the TechArm system's effectiveness in assessing perceptual competencies in sighted and visually impaired children, and its potential to be used to develop personalized rehabilitation programs for people with visual and sensory impairments

    Assigning ecological roles to the populations belonging to a phenanthrene-degrading bacterial consortium using omic approaches

    Get PDF
    The present study describes the behavior of a natural phenanthrene-degrading consortium (CON), a synthetic consortium (constructed with isolated strains from CON) and an isolated strain form CON (Sphingobium sp. AM) in phenanthrene cultures to understand the interactions among the microorganisms present in the natural consortium during phenanthrene degradation as a sole carbon and energy source in liquid cultures. In the contaminant degradation assay, the defined consortium not only achieved a major phenanthrene degradation percentage (> 95%) but also showed a more efficient elimination of the intermediate metabolite. The opposite behavior occurred in the CON culture where the lowest phenanthrene degradation and the highest HNA accumulation were observed, which suggests the presence of positive and also negative interaction in CON. To consider the uncultured bacteria present in CON, a metagenomic library was constructed with total CON DNA. One of the resulting scaffolds (S1P3) was affiliated with the Betaproteobacteria class and resulted in a significant similarity with a genome fragment from Burkholderia sp. HB1 chromosome 1. A complete gene cluster, which is related to one of the lower pathways (meta-cleavage of catechol) involved in PAH degradation (ORF 31–43), mobile genetic elements and associated proteins, was found. These results suggest the presence of at least one other microorganism in CON besides Sphingobium sp. AM, which is capable of degrading PAH through the meta-cleavage pathway. Burkholderiales order was further found, along with Sphingomonadales order, by a metaproteomic approach, which indicated that both orders were metabolically active in CON. Our results show the presence of negative interactions between bacterial populations found in a natural consortium selected by enrichment techniques; moreover, the synthetic syntrophic processing chain with only one microorganism with the capability of degrading phenanthrene was more efficient in contaminant and intermediate metabolite degradation than a generalist strain (Sphingobium sp. AM).Centro de Investigación y Desarrollo en Fermentaciones Industriale
    • …
    corecore