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Summary 

Aim: To analyze the physiological response of Sphingobium sp. 22B to water stress. 

Methods and results: The strain was grown under excess of carbon source and then 

submitted to low (60RH) and high (18RH) water stress conditions for 96 h. Quantification of 

trehalose, glycogen, polyhydroxybutyrate (PHB), and transmission electron microscopy 

(TEM) was studied. Genes linked with desiccation were searched in Sphingobium sp. 22B 

and Sphingomonas “sensu latu” genomes and their transcripts were quantified by Real-Time 

PCR.  Results showed that, in absence of water stress, strain 22B accumulated 4.76± 1.41% 

of glycogen, 0.84± 1.62% of trehalose and 44.9± 6.4% of PHB per cellular dry weight. 

Glycogen and trehalose were mobilized in water stresses conditions, this mobilization was 

significantly higher in 60RH in comparison to 18RH. Gene treY was upregulated 6-fold 

change in 60RH relative to 18RH. TEM and quantification of PHB revealed that PHB was 

mobilized under 60RH condition accompanied by the downregulation of the phbB gene. 

TEM images showed an extracellular amorphous matrix in 18RH and 60RH. Major 

differences were found in the presence of aqpZ and trehalose genes between strain 22B and 

Sphingomonas genomes. 

Conclusion: Strain 22B showed a carbon conservative metabolism capable of accumulation 

of three types of endogenous carbon sources. The strain responds to water stress by changing 

the expression pattern of genes related with desiccation, formation of an extracellular 

amorphous matrix and mobilization of the carbon sources according to the degree of water 

stress. Trehalose, glycogen and PHB may have multiple functions in different degrees of 

desiccation. The robust endowment of molecular responses to desiccation shown in 

Sphingobium sp. 22B could explain its survival in semiarid soil.    
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Significance and Impact of the study: Understanding the physiology implicated in the 

toleration of the PAH-degrading strain Sphingobium sp 22B to environmental desiccation 

may improve the bioaugmentation technologies in semiarid hydrocarbons contaminated soils.  

 

Key words: PAH-degrading Sphingobium; Sphingobium sp 22B; desiccation; water stress; 

Patagonia; PHB; glycogen; trehalose 

 

Introduction 

Patagonia is a semiarid scrub plateau located at the southern end of South America, shared by 

Argentina and Chile. It constitutes a vast area of steppe and desert that extends south from 

latitude 37° to 51° S occupying 673,000 square kilometers. This region has low precipitation 

concentrated in winter, strong water deficits in spring and summer, and persistent and intense 

western winds (Paruelo et al. 1998). 

Indigenous microorganisms are regularly exposed to desiccation, this being the limiting 

factor of life in semiarid Patagonia. Desiccation in cells causes DNA and protein 

destabilization by oxidation and browning reactions (Potts and Webb 1994), and a transition 

to the gel phase in cell membranes (Ramos et al. 2001). Several stresses occur simultaneously 

during desiccation, since in this process cells are losing intracellular water which also 

generates carbon starvation, osmotic and oxidative stresses. Therefore, the specific and 

common factors for each of these stresses are difficult to determine (Ramos et al. 2001).  

Resistance mechanisms for environmental factors have been studied extensively in different 

bacteria genera. In Bacillus subtilis, E. coli and other Gram negative bacteria, a general 

response to stress has been described overlapping the osmotic shock responses, responses to 

starvation, and desiccation tolerance, where the same mechanism is induced in these 
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unfavorable conditions. This mechanism involved the expression of rpoS gene, which 

encodes a putative sigma factor (σ
s) that confers to RNA polymerase the affinity for specific 

promoters of genes associated with adverse environmental conditions (Helmann and 

Chamberlin 1991). The increase tolerance of  microorganisms to desiccation has been linked 

with the ability to synthesize compatible solutes (Crowe et al. 1987; Welsh 2000; Alvarez et 

al. 2004), sporulation process in Bacillus (Setlow 1995), modifications in the composition of 

fatty acids in the biological membranes (Halverson and Firestone 2000) and 

exopolysaccharides synthesis (Roberson and Firestone 1992; Ophir and Gutnick 1994). The 

formation of biofilms (Tribelli and López 2011) and the accumulation of endogenous carbon 

sources, such as polyhydroxyalkanoates (PHA) (Matin et al. 1979; Ayub et al. 2004), have 

also been associated with the ability to survive and tolerate unfavorable environmental 

conditions like desiccation.  

The Sphingobium sp. strain 22B was isolated in a previous study from hydrocarbon 

contaminated soil in the semiarid Patagonia (Madueño et al. 2011). The persistence exhibited 

by strain 22B during inoculation in autochthonous bioaugmentation technology (Madueño et 

al. 2015) demonstrated its ability to tolerate the environmental desiccation of the region.  

Microorganisms of the genus Sphingomonas are Gram negative, rod-shaped, 

chemoheterotrophic and strictly aerobic bacteria broadly distributed in nature. Sphingomonas 

(“sensu latu”) present four subgenera proposed by Takeuchi et al. (2001) called 

Sphingobium, Novosphingobium, Sphingopyxis and Sphingomonas (“sensu stricto”). This 

genus comprises PAH-degrading microorganisms present in soil, which are frequently 

isolated from PAH-enriched cultures (Baraniecki et al. 2002; Festa et al. 2013). 

Sphingomonas species are characterized by their large catabolic diversity, being able to 

degrade a wide range of natural and anthropogenic aromatic compounds (Stolz 2009). 

Members of this group are broadly distributed in nature and have been isolated from a variety 
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of environments such as pristine (Lin et al. 2012) and contaminated (Vacca et al. 2005) soil, 

in cold (Margesin et al. 2012), extreme (Farias et al. 2011) and arid environments (Reddy and 

Garcia-Pichel 2007). Although there are some reports on physiology and responses to 

environmental factors in bacteria of the genus Sphingomonas (Fegatella and Cavicchioli 

2000; Fida et al. 2012), little is known about the responses used by these microorganisms 

against the fluctuating availability of water in semi-arid Patagonia.  

In this work, we researched some physiological properties that allow strain 22B to survive to 

the environmental conditions of Patagonia. The occurrence in strain 22B of mechanisms 

involved in the tolerance of cells to desiccation reported for other bacteria, such as the ability 

to produce reserve compounds, compatible solutes, and extracellular polymeric substances 

(EPS) were examined. In addition, the recently obtained genomic information of strain 22B 

(Madueño et al. 2016) provided the possibility of analyzing the occurrence, expression and 

distribution of key genes involved in those physiological processes. 

 

MATERIALS AND METHODS 

 

Culture conditions 

Sphingobium sp. 22B (DDBJ/ENA/GenBank under the accession number LTAB00000000) 

was grown in liquid mineral medium (LMM) with 1 % glucose at 28 °C and 150 rpm for 48 

h. The concentration of ammonium chloride in LMM was reduced to 0.1 g l-1 to allow the 

accumulation of reserve compounds (5 g l-1 ClNa, 1 g l-1 K2PO4H, 1.7 g l-1 (NH4)2H2PO4, 0.1 

g l-1 (NH4)2SO4, 0.2 g l-1 SO4Mg). Cells were harvested at 48 h, washed with NaCl solution 

(0.85 %, w/v) and filtered or lyophilized for subsequence analyses.  
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Water stress resistance test in Sphingobium sp. 22B  

Sphingobium sp. 22B was cultivated for 48 h with an excess of carbon source (culture 

conditions) in 3 Erlenmeyer flasks. Total culture volume (400 ml) of each flask was filtered 

in sterile conditions in fractions of 20 ml onto 0.45 μm and 60 mm pore-size nitrocellulose 

filters (Millipore) by a vacuum pump. The filters with harvested cells on their surface were 

submitted to the following conditions:  

• High water stress Condition (18RH): 20 filters were placed separately in 

independent sterile petri dishes and laid together into desiccator at 18 % of relative 

humidity (RH). RH was measured with a thermohygrometer with Max/Min function 

(Gesa) for 96 h at 28°C. Finally, all filters were taken by tweezer in sterilized 

conditions and resuspended in 400 ml of PS. Different fractions of this volume were 

used for cell survival determination, extraction and quantification of intracellular 

PHB, glycogen and trehalose, and for transmission electron microscopy (see below). 

• Low water stress Condition (60RH): 20 filters were placed separately in 

independent sterile petri dishes and, afterwards, all of them placed together into a 

container at 60 % RH measured with a thermohygrometer with Max/Min function 

(Gesa) for 96 h at 28°C. Finally, all filters were taken by tweezer in sterilized 

conditions and resuspended in 400 ml of PS. Different fractions of this volume were 

used for cell survival determination, extraction and quantification of intracellular 

PHB, glycogen and trehalose, and for transmission electron microscopy. 

• Control: 20 filters were obtained and resuspended all together immediately in 400 

ml sterile physiological solution (PS) without stress condition. 

Independent Erlenmeyer flasks were used for each condition. The assay was performed in 

triplicate. 
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Determination of cell survival   

The survival of the strain 22B in each condition was performed by viable count (cfu) with R2 

medium (Reasoner and Geldreich 1985) using 1/10 serial dilutions of 1ml of cell suspension 

obtained after water stress treatments. Survival rates were calculated as [log (cfu in low 

(60RH) or high (18RH) water stress condition)] / [log (cfu in the control condition)] x100 

(Alvarez et al. 2004). The percentage of lost water was calculated weighting filters before and 

after being subjected to stress condition.  

 

Transmission Electron Microscopy  

1.5 ml of cell suspension in PS was spun down at 800 g for 5 min and fixed in 2 % 

glutaraldehyde in phosphate buffer 0.2 M (pH 7.2-7.4) for 2 h at 4 °C. Secondary fixation 

was performed using osmium tetroxide 1 % for 1 h at 4 °C and subsequently, the samples 

were dehydrated in a growing series of alcohols and embedded in epoxy resin. Ultrathin 

sections (90 nm) were contrasted with uranyl acetate and lead citrate and 10 to 15 fields were 

examined in each condition in a transmission electron microscope JEM 1200 EX II (JEOL 

Ltd., Tokyo, Japan) and photographed with a camera Erlangshen ES1000W, Model 785 

(Gatan Inc., Pleasanton, California, USA) in Servicio Central de Microscopía Electrónica de 

la Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata.  

 

Extraction and quantification of intracellular PHB  

For quantitative determination of PHB, 5-10 mg of lyophilized cells were subjected to 

methanolysis in the presence of 15 % (v/v) sulphuric acid, and 3-hydroxybutyrate-

methylester was analyzed by HP 5890 gas chromatograph (GC) with flame ionization 

detector (FID) and VF-23ms column 30 mx 0.25 mm x 0.39 mm (Varian). The injection 
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volume was 0.2 μl. Helium (13 mm/min) was used as carrier gas. The temperature of the 

injector and detector was 270 °C. Tridecanoic acid was used as internal standard. 

 

Extraction and quantification of intracellular Glycogen 

Total polysaccharide was extracted from lyophilized cells by classical alkaline hydrolysis 

(Elbein and Mitchell 1973). Glycogen quantification was performed by enzymatic hydrolysis. 

Alkaline extracts were digested with 2 μl of alpha-amylase (519 IU) and 15 μl of 

amyloglucosidase (129 IU) in 50 mM sodium acetate buffer pH 5 in final volume of 1 ml at 

55 °C for 4 h. Glucose was determined by a specific glucose oxidase method (Hernández et 

al. 2008) 

 

 Extraction and quantification of intracellular trehalose 

Trehalose was extracted from 10 to 30 mg of lyophilized cells with 15 ml of 80 % ethanol for 

3 h at 65 ºC. After centrifugation, each pellet was washed with 5 ml of 80 % ethanol and 

centrifuged. Both supernatants were combined and vacuum-dried. The residue was dissolved 

in 0.5-1 ml water (Zhang and Yan 2012). The water-soluble residue containing trehalose was 

analyzed by isocratic HPLC. Trehalose was separated on a Carbopac PA1 (Dionex) column 

(4 x 250 mm) and NaOH/AcNa (0.2 M / 0.3 M) pH 12 was used as eluent and detected with 

electrochemical PAD (Pulse Amperometric Detector) Water 2465.  

 

Primer design, RNA Isolation and Quantitative Real-Time PCR (qRT-PCR) 

The sequences of single-copy Sphingobium sp. 22B genes (DDBJ/ENA/GenBank; 

LTAB00000000) (Table 3) were used as template for the design of primers related with 

physiological key genes by Primer 3 Software (version 0.4.0). Specificity of primers was 

verified in silico by RAST (Rapid Annotation using Subsystem Technology version 2.0) and 
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by Artemis Software and by PCR with the same program detailed below, followed by gel 

electrophoresis. The used primers are shown in Table 1. Cell cultures for RNA extraction 

were obtained, as detailed before, in water stress resistance test, using filter area representing 

approximately 5 ml of culture for each sample, which was resuspended in RNA later® 

(Sigma Aldrich) solution and stored at -80°C to prevent RNA degradation. RNA extraction 

was carried out with RNeasy Mini Kit (Qiagen) following the manufacturer’s instructions. 

For cDNA synthesis, 1 mg of each RNA sample was treated with DNase I (Promega) for 1 h 

at 37 °C. The DNA-free RNA was then used as template to synthesize the cDNA with M-

MLV Reverse Transcriptase (Invitrogen) and Random Hexamer Primer (Thermo Scientific) 

following the manufacturer’s instructions. RNA extraction and cDNA synthesis were carried 

out in triplicate from independent cultures of each condition. The efficiencies of the selected 

primer pairs (Table 1) were checked by real time PCR (Stratagene Mx3000P) with serial 

dilutions of an equimolar mixture of cDNA of the three conditions tested in this work as 

templates. PCR efficiency was near 1. The reaction mix contained 1 µl of DNA template, 1 

µM of the forward and reverse primer, 0.2 µl of BSA (Sigma) 2× SYBR Green PCR Master 

Mix (Promega). Total reaction volume of 10 µl was reached with PCR-grade water. The 

program started with a hold at 95 ºC for 10 min, followed by 45 cycles of denaturation at 95 

ºC for 10 s, annealing at 55 ºC for 15 s and elongation at 72 ºC for 15 s. qPCR assays were 

performed in three technical replicates on samples and negative controls. The negative 

controls consisted of PCR blanks with only the reaction mix and PCR blanks containing the 

mix and 1 µl of PCR-grade water. Threshold cycles (Ct) were measured in separate tubes, in 

triplicate. Identity and purity of the amplified product were checked by analyzing the melting 

curve at the end of amplification. The differences between Cts were calculated in every 

sample for each gene of interest as follows: Ct gene of interest - Ct 16SrRNA gene as 

reference gene marker. Relative changes in the expression level of one specific gene (∆∆Ct) 
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were calculated by the ∆Ct method. The expression ratios for the different genes were 

obtained dividing the normalized power values in desiccation (18RH) and humid (60RH) 

conditions calculated from the ∆∆Ct method, using the 16s as reporter gene.  

 

“In silico” search of stress-related genes in draft-genome of Sphingobium sp. 22B and in 

complete genomic projects in Sphingomonas strains   

RAST (SEED Viewer version 2.0) and NCBI annotation server was used for the selection of 

genes related with osmotic stress, trehalose and glycogen biosynthesis and utilization, PHB 

metabolism and exopolysaccharide synthesis in Sphingobium sp. 22B. The sequence of the 

coding proteins of each gene of the strain 22B (DDBJ/ENA/GenBank; LTAB00000000) was 

compared in november 2017 by BLAST genome (http://www.ncbi.nlm.nih.gov/genome) with 

10 strains of Sphingobium and Novosphingobium with complete genome projects available at 

that moment (Table 4). In addition, each gene name and EC number was searched in 

Sphingomonas complete genome projects. 

 

Statistical Analysis 

All experiments in this study were performed in triplicate. Results are expressed as mean 

values ± S.E.M. Data were analyzed by ANOVA (one-way) followed by Fisher´s test. In all 

cases, P values were calculated with Student’s t test and those lower than 0.05 were 

considered statistically significant. All statistical tests were performed using GraphPad Prism 

6.0.  
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RESULTS 

Physiological responses of strain Sphingobium sp. 22B to water stress conditions 

The physiological responses of the strain 22B to water stress were compared during 

incubation of cells under high water stress condition (18RH) and low water stress condition 

(60RH). In agreement with previous results (Madueño et al. 2011),  Sphingobium sp. 22B 

exhibited high cell culturability (80.6 ± 2.6 %) after 96 h under 18RH (with 94.5 ± 0.85 % 

water loss). A cell culturability of 99.2 ± 0.45 % was observed in 60RH where 58.8 ± 5.1 % 

of water loss occurred.  

Sphingobium sp. 22B was able to produce and accumulate 44.9 ± 6.4 % of PHB, 4.8 ± 1.4 % 

of glycogen and 0.84 ± 0.16 % of trehalose per cellular dry weight (CDW) during its growth 

with an excess of carbon source after 48 h of incubation at 28° C (Table 2) (control 

condition). The content of trehalose and glycogen varied significantly (P < 0.05) during cell 

incubation under 18RH and 60RH conditions. In comparison to the control condition, after 96 

h under 18RH, cells mobilized approximately 77 % of glycogen (2.0 ± 0.3 %) and 65 % of 

trehalose (0.28 ± 0.1) content, but PHB was not mobilized (45.7 ± 28.4) (Table 2). In 

contrast, under 60RH, cells mobilized the three store carbon compounds studied in this work, 

approximately 50 % of PHB (22.1 ± 15.9), 85 % of glycogen (0.7 ± 0.3) and 88 % of 

trehalose (0.1 ± 0.04) (Table 2).  

The ultrastructure of Sphingobium sp. 22B cells was analyzed by transmission electron 

microscopy (TEM) in control, 18RH and 60RH conditions (Fig. 1). Transmission electron 

micrographs of cells in the 60RH condition (Fig. 1 A) showed intracytoplasmic inclusion 

bodies with smaller size in comparison with those shown in control cells and cells under the 

18RH condition (Fig. 1 C, E). Interestingly, TEM showed the production of an amorphous 

matrix which could represent an extracellular polymeric substance around the cells after 96 h 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

of incubation under 60RH (Fig. 1 B) and 18RH (Fig. 1 D) conditions, in contrast to control 

cells and cells grown in R3 broth (Fig. 1G). 

 

Genomic features linked to survival under desiccation  

The availability of the Sphingobium sp. 22B genome (DDBJ/ENA/GenBank; 

LTAB00000000) (Madueño et al. 2016) allowed us to analyze the occurrence of genes 

hypothetically involved in water stress response. Since 22B strain was able to produce PHB, 

glycogen, trehalose and probably an EPS, and because there are many reports that showed the 

relationship of these compounds with desiccation, we searched for putative genes related to 

their metabolism. As it is a draft-genome, still incomplete, we regarded the apparent absence 

or low copy number of a given gene with caution. Results of this search are summarized in 

Table 3.  

Gene aqpZ is present in the genome of strain 22B (Table 3) and encodes a water channel 

belonging to the major intrinsic protein family (MIP) (King et al. 2004) and has been 

involved in environmental stress response in bacteria (Wang 2002; Sinetova et al. 2015; 

Wood 2015). Putative genes for two different pathways of trehalose biosynthesis (otsAB and 

treYZ) and two genes for its degradation (tre, tp) were found in Sphingobium sp. 22B (Table 

3). As expected, 22B strain genome contained genes for the entire glycogen biosynthesis and 

degradation pathways, such as glgC, glgA, glgB, glgP, and glgX, (Table 3). Multiple genes 

involved in PHB metabolism were identified with at least 3 of them coding for 

polyhydroxyalkanoic acid synthase enzymes, 1 for acetoacetyl-CoA reductase and 5 for 3-

ketoacyl-CoA thiolase enzymes. The presence of diverse genes for transferases and 

glycosyltransferases (rfbP, epsF, lgt1, lgt2) related with the synthesis of extracellular 

polysaccharides were also found in 22B strain genome (Table 3). 
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Comparative analyses of stress-related genes in draft-genome of Sphingobium sp. 22B and 

in Sphingomonas complete genomic projects   

The genetic endowment of Sphingobium sp. 22B related with the responses to environmental 

stresses was compared to those of other 10 Sphingomonas complete genome projects available in 

National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/) (Table 4).  

In most of the studied strains, the complete pathway for biosynthesis and degradation of 

glycogen and for biosynthesis of trehalose from glucose (otsAB) were found (Table 4). An 

aquaporin family gene related with osmotic stress (aqpZ) and epsF gene involved in the 

biosynthesis of an EPS were found in Sphingobium sp. 22B and also in 4 other Sphingobium sp. 

strains (Table 4). Major differences between Sphingomonas ¨sensu latu¨ strains and strain 22B 

were found in trehalose metabolism. Gene tre, which encodes trehalase, and  treY and treZ genes 

for the biosynthesis of trehalose from glycogen, were only found in two Sphingomonas strains 

(Novosphingobium sp. PP1Y, Sphingobium sp. YBL2 for tre  gene, and Sphingobium sp. SYK-6 

Ac, Sphingobium sp. YBL2 treY and treZ genes) (Table 4), and also tp gene which encodes 

trehalose phosphorylase enzyme was found in 3 Sphingomonas complete genome projects 

studied (Sphingobium sp. YBL2, Sphingobium sp. EP60837, Sphingobium sp. MI1205).   

 

Quantitative Real-Time PCR (qRT-PCR) 

To analyze the expression of genes hypothetically related with water stress response in 

Sphingobium sp. 22B specific primers were designed. Those primers were related to single 

copy genes, involved in osmotic stress (aqpZ), trehalose biosynthesis (otsA, otsB, treY, treZ), 

trehalose utilization (tre, ga,),  glycogen biosynthesis and utilization (glgA, glgB, glgC glgP), 

PHB (phbB) and exopolysaccharide biosynthesis (epsF, lgt1). Only those that showed clear 

specificity and efficiencies near 1 were used in this assay. Figure 2 shows the fold changes in 

mRNA levels of the genes glgC, glgP, aqpZ, phbB, otsA, treY, lgt1 in 18RH, 60RH and 
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control conditions calculated from the ∆∆Ct method. AqpZ gene expression showed no 

difference between 18RH, 60RH and control conditions. The glycogen degradation and 

biosynthesis genes glgC and glgP were significantly downregulated in 18RH and 60RH 

conditions in comparison to control, although no differences in the expression under both 

water stress conditions studied were found (Figure 2). The expression of phbB gene, which is 

involved in poly-hydroxybutyrate biosynthetic process, was downregulated in 60RH and was 

not significantly different in 18RH in comparison to the control condition (Figure 2). Putative 

gene lgt1, encoding a glycosyl transferase involved in EPS biosynthesis, and otsA gene which 

encodes for an alpha,alpha-trehalose-phosphate synthase, were downregulated in 60RH in 

comparison with the control, and not  detected in the high water stress condition (18RH). The 

gene treY which encodes a malto-oligosyltrehalose synthase was 6-fold upregulated in the 

low water stress condition (60RH) in comparison with the control condition (Figure 2). 

 

Discussion 

Microorganisms have the capacity to utilize a huge variety of nutrients and adapt to 

continuously changing environmental conditions. Many microorganisms, including yeast and 

bacteria, accumulate carbon and energy reserves to cope with starvation conditions 

temporarily present in the environment (Wilson et al. 2010). Sphingobium sp. 22B strain 

shows a carbon conservative metabolism which allows the cells to store carbon and energy 

within different compounds, such as PHB, glycogen, and trehalose (Table 2). These 

compounds may play different roles in cells and may be part of the complex metabolic 

network present in strain 22B to cope with the adaption to environmental stresses.  

The synthesis and accumulation of PHB is a known and widely distributed property in 

prokaryotes and depends on either the type of strain or the carbon source used in the process 

(Verlinden et al. 2007; Getachew and Woldesenbet 2016). PHB seems to be relevant for 22B 

strain physiology, since it accumulates significant amounts of these lipids (Table 2, Fig.1 E) 
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and has in its genome a robust endowment of genes/proteins for their metabolism (Table 3). 

As a comparison with strain 22B, who stores 45 % CDW of PHB in the control condition, 

other bacteria like Bacillus cereus CFR06 and Caulobacter crescentus accumulate 50 % and 

18 % CDW of PHB respectively from glucose as carbon source (Qi and Rehm 2001; Halami 

2008). In particular other strains of Sphingomonas showed an accumulation of 

polyhydroxyalkanoates from glucose in percentages that ranged from a 2.9 to 70.2 % (w/w) 

(Godoy 2003). In strain 22B, PHB may serve as an endogenous carbon and energy source, 

providing a temporal nutritional independence from the environment and the maintenance of 

the metabolic activity during starvation under low water stress conditions (60RH) (Table 2). 

The results obtained in this study, however, showed that under the high water stress condition 

(18RH), Sphingobium sp. 22B maintained the same intracellular PHB concentration as the 

control (Table 2), kept the integrity of intracytoplasmic inclusion bodies (Fig.1) and showed 

the same expression level of phbB gene in 18RH condition in comparison with the control 

condition (Figure 2). Therefore, the endogenous mobilization of PHB did not seem to be a 

process related to high water stress condition (18RH) in strain 22B. Recently Goh et al. 

(2014), provided evidence that in  Delftia acidovorans the enhancement of stress tolerance 

can be achieved without mobilization of previously accumulated PHA. The authors argue that 

intracytoplasmic PHA granules could act as a specific site for binding a stress-resistant 

protein reducing the stress-resistant protein cytoplasmic concentration and consequently the 

expression of more proteins. Obruca et al. (2016), analyzed the PHB monomer 3-

hydroxybutyrate (3HB) as a chemical chaperone capable of protecting model enzymes from 

different environmental stresses finding that 3HB exhibits a greater protective effect than that 

of the trehalose. In concordance with those authors’ arguments, PHB might play diverse roles 

under different degrees of water stress: it can serve as an endogenous carbon source under 

60RH and can protect cells under 18RH.   
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Cells of 22B strain actively metabolized carbohydrates in both conditions of water stress 

tested in this work, suggested by the mobilization of intracellular glycogen and trehalose 

(Table 2), the upregulation of treY gene in low water stress condition, the absence of 

significant differences between the expression of the glycogen synthesis and degradation 

genes glgC and glgP, and the downregulation of otsA gene in water stress conditions (Fig. 2).  

Glycogen biosynthesis is another mechanism for carbon storage in bacteria and Sphingobium 

sp. 22B accumulates approximately 5 % CDW (Table 2) under excess of the carbon source. 

Beer et al., in 2004 indirectly suggested that members of the genus Sphingomonas may have 

the ability to produce glycogen, and are able to reach a biomass glycogen level of 5 to 24 (% 

w/w). Glycogen  has been detected in higher concentrations in other bacteria such as 18 % of 

the dry weight in Cyanobacteria after nitrogen withdrawal (Klotz and Forchhammer 2017) 

and up to 60 CDW % in Clostridia just prior to sporulation (Preiss et al. 1983). According to 

our knowledge this is the first report of the production of glycogen in a strain of 

Sphingobium. Under the water stress conditions studied in this work, endogenous 

mobilization of glycogen in strain 22B occurs probably for attending cells in carbon 

starvation (Table 2). In concordance with the greatest mobilization of glycogen in the 60RH 

condition (Table 2), treY gene, who is involved in the conversion of endogenous glycogen to 

trehalose, was upregulated (Fig. 2). However, the concentration of trehalose was less (0.1 ± 

0.04 % CDW) in the 60RH condition in comparison with 18RH (0.28 ± 0.1 % CDW). Some 

authors have reported that trehalose genes were overexpressed in osmotic stress and 

desiccation (Cytryn et al. 2007; Johnson et al. 2011) and assigned to trehalose different 

biological roles such as carbon source or compatible solute under osmotic-shock conditions 

(Omar et al. 2014; Shleeva et al. 2017). In Rhodococcus opacus PD630 the accumulation of 

trehalose was 0.48 % CDW from gluconate as carbon source after seven days in dehydration 

(Alvarez et al. 2004). Comparative genome analysis revealed that  strain 22B could be 
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synthesizing trehalose through two different pathways (otsAB and treYZ) while only in 2 

strains of the others Sphingomonas “sensu latu” included in this study (Sphingobium sp. 

SYK-6 and YBL2) the treYZ pathway was found to be present. Diverse trehalose synthesis 

pathways could provide Sphingobium sp. 22B the necessary metabolic flexibility to respond 

to environmental stress with this disaccharide, giving to the strain competitive advantages 

over other bacteria under desiccation. Additionally, glycogen and trehalose in Sphingobium 

22B may serve as an endogenous source of carbon and energy and may provide sugar 

residues for the biosynthesis of extracellular polymer, which is produced during 60RH and 

18RH condition, as the TEM analysis revealed (Fig. 1B, D).  

Sphingobium sp. 22B has at least 5 putative genes that encode for glycosyltransferases 

involved in the synthesis of extracellular polymeric substances (EPS) (lgt1, lgt2, epsF, rfbP) 

(Table 4). EPS has been associated with the responses of Sphingomonas wittichii RW1 to 

osmotic stress, since a transcriptomic study demonstrated the induction of genes involved in 

the polysaccharide synthesis, assembly and export of EPS (Roggo et al. 2013). Although in 

strain 22B submitted to water stress conditions, an extracellular amorphous matrix was seen 

in TEM, lgt1 gene expression (Figure 2) was downregulated indicating that this gene may not 

be involved in the synthesis of EPS. The production of an extracellular amorphous matrix by 

strain 22B in response to water stress may offer a significant mechanical protection to cells, 

preventing intracellular water loss (Ophir and Gutnick 1994), and allowing the cells to make 

metabolic adjustments to survive to water stress (Roberson and Firestone 1992; Tribelli and 

López 2011).  

In 4 of the 10 Sphingomonas “sensu latu” complete genomes and in Sphingobium sp. 22B 

genome, the gene aqpZ coding for aquaporin protein, was present (Table 4). Aquaporins are 

water channels mediating transmembrane water flux in E. coli (Calamita 2000) and the 

absence or even mutations of this gene in many living microorganisms indicates that 
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aquaporins may have nonessential functions and are not always related to microbial survival 

(Tanghe et al. 2006). Many authors studying aquaporins found  inconsistencies (Tanghe et al. 

2006) in results during hypoosmotic (Booth and Louis 1999) and hyperosmotic stress in 

bacteria (Hernández-Castro et al. 2003).The results obtained in this study suggested that 

aquaporins has no evident function in Sphingobium sp. 22B under water stress conditions, 

since aqpZ was not differentially expressed between the water stress conditions studied 

(Figure 2). 
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FIGURE LEGENDS  

Table 1:  qPCR Primers used in this study  

 

Table 2:  Intracellular percentage of glycogen, trehalose and PHB per cellular dry weight 

(CDW) in the strain Sphingobium sp. 22B in control, 18RH (18 % of relative humidity) and 

60RH (60 % of relative humidity) conditions. Values are means ± SEM.  

 

Table 3: Putative genes hypothetically linked to survival under desiccation in Sphingobium 

sp. 22B draft-genome (http://www.ncbi.nlm.nih.gov/genome). Genes showed are related with 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

osmotic stress, trehalose and glycogen biosynthesis and utilization; PHB and 

exopolysaccharide biosynthesis in Sphingobium sp. 22B genome. 

 

Table 4: Comparative genome analysis between Sphingobium sp. 22B draft-genome and 

Sphingomonas ¨sensu latu¨ complete genome projects showing the presence of at least one 

(+) of putative genes linked with osmotic stress; trehalose and glycogen biosynthesis and 

utilization; PHB and exopolysaccharide biosynthesis. NF: Putative genes not found.  

 

Figure 1: Transmission electron micrographs of Sphingobium sp. 22B. Ultrathin sections (A) 

and negative stained (B) transmission electron micrographs in 60RH condition (60 % of 

relative humidity). Ultrathin sections (C) and negative stained (D) transmission electron 

micrographs in 18RH condition (18 % of relative humidity). Ultrathin sections (E) and 

negative stained (F) of the strain grown on glucose for 48 h at 28°C (without stress 

condition). Negative stained transmission electron micrographs of strain growing in R3 broth 

for 48 h (G) (without stress condition).  

 

Figure 2: Gene expression of key genes/markers (glgP, glgC, aqpZ, phbB, igt1, otsA and 

treY) regulated during 18RH (high water stress) and 60RH (low water stress) conditions. 

Values expressed as fold change are means ± SEM of three independent RNA preparations 

and indicate the change in the mRNA levels of genes studied in comparison with the control 

condition (Value of 1). The significance of gene expression between conditions are shown 

with different letters (a,b) and was determined by Student’s t test using a P value of ± 0.05 as 

the threshold.  
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Primer name EC number Sequence (5’-3’) Pb Reference 

glgC_F 
2.7.7.27 

5’GTCCATGGGCATCTACGTCT3’  244 This work 

glgC_R 5’GTCGGTCAGGTCGATATTGG3’ This work 

glgP_F 

2.4.1.1 

5’ATCTGGTGCAGGGCATCTAC3’ 187 This work 

glgP_R 5’GTCGCATATTCCCTGATCGT3’ This work 

AqpZ_F 

-- 

5’CCGTCACGCTGGTTATGC3’ 150 This work 

AqpZ_R 5’GGATCTTGGCCGACATCTG3’ This work 

phbB_F 

1.1.136 

5’GACGACTGGAACGAGGTGAT3’ 231 This work 

phbB_R 5’ATTGACGGTGACGCCATATT3’ This work 

lgt1_F 
-- 

5’TTCAACGTCCACAGCATGAC3’ 188 

 

This work 

lgt1_R 5’GTGCCCCAATAATGGATGTC3’ This work 

OtsA_F  
-- 

5’GTCATTTCGAACCGGGTCAG3’ 163 

 

This work 

OtsA_R  5’CTTCATCCTCCGAAAAGCCG3’ This work 

treY_F 
5.4.99.15 

5’GCCAATGACCTGCTGAACTG3’ 

250 

This work 

treY_R 5’TCTCCACCACGATATAGGCG3’ This work 

1055f 

---- 

5’ ATGGCTGTCGTCAGCT 3’ 337 Harms, 2003 

1392r 5’ ACGGGCGGTGTGTAC 3’  Harms. 2003 

 

Table 1:  qPCR Primers used in this study 

 

 

Conditions Glycogen % CDW Trehalose % CDW PHB % CDW 

Control 4.8 ± 1.4 0.84 ± 0.16 44.9 ± 6.4 

18RH 2.0 ± 0.3 0.28 ± 0.1 45.7 ± 28.4 

60RH 0.7 ± 0.3 0.10 ± 0.04 22.1 ± 15.9 

 

 

Table 2:  Intracellular percentage of glycogen, trehalose and PHB per cellular dry weight (CDW) in 

the strain Sphingobium sp. 22B in control, 18RH (18 % of relativity humidity) and 60RH (60 % of 

relativity humidity) conditions. Values are means ± SEM.  
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Table 3: Putative genes hypothetically linked to survival under desiccation in Sphingobium sp. 22B 

draft-genome (http://www.ncbi.nlm.nih.gov/genome). Genes showed are related with osmotic 

stress, trehalose biosynthesis and utilization; glycogen biosynthesis and utilization; PHB and 

exopolysaccharide biosynthesis in Sphingobium sp. 22B genome. 

Product name Gene EC Number Reactions 
Scenario 
reactions 

GO 
N° 
Copy  

Osmotic stress 

aquaporin family protein aqpZ - --- --- 
GO:0005215 
GO:0006810 
GO:0016020 

1 

Trehalose biosynthesis and utilization 

alpha,alpha-trehalose-phosphate synthase otsA 2.4.1.15 
R00836 
R06043 

R02737 GO:0003825 1 

trehalose-phosphatase otsB 3.1.3.12 
R02778 
R06228 

R02778 - 1 

malto-oligosyltrehalose synthase treY 5.4.99.15 
R06243 
R01824 

- GO:0047470 
1 
 

malto-oligosyltrehalose trehalohydrolase treZ  3.2.1.141 - - - 1 

glycoside hydrolase family 15 protein 
(glucoamylase) 

ga  3.2.1.3 - - - 1 

trehalase treA  3.2.1.28 
R00010 
R06103 

R00010 GO:0004555 1 

glycoside hydrolase family 65 protein 
(trehalose phosphorylase) 

tp  2.4.1.64 
R02727 
R06053 

R02727 GO:0047656 1 

Glycogen biosynthesis and utilization 
glycogen synthase glgA 2.4.1.21 R02421 R02421 GO:0009011 1 

glycogen branching enzyme glgB 2.4.1.18 R02110 R02110 - 1 

glucose-1-phosphate adenyltransferase glgC 2.7.7.27 R00948 R00948 GO:0008878 1 

glycogen/starch/alpha-glucan 
phosphorylase 

glgP 2.4.1.1 R01821 R02111 GO:0004645 1 

glycogen debranching enzyme glgX 3.2.1.- - - 
GO:0003824 
GO:0005975 
GO:0043169 

2 

PHB synthesis  

acetyl-CoA acetyltransferase phbA 2.3.1.9 - R04254 GO:0003985 5 

beta-ketoacyl-ACP reductase phbB 1.1.1.36 R01779 R01977 GO:0018454 1 

poly-beta-hydroxybutyrate polymerase phbC - - - - 2 

class I poly(R)-hydroxyalkanoic acid 
synthase 

phaC - + - - 1 

Exopolysaccharide biosynthesis 

exopolysaccharide biosynthesis 
glycosyltransferase EpsF 

epsF 2.4.1.- - - GO:0009058 1 

glycosyl transferase,  family 4 protein lgt1 - - - - 2 

glycosyl transferase,  family 2  protein lgt2 - - - - 1 

undecaprenyl-phosphate 
galactosephosphotransferase 

rfbP 2.7.8.6 - - GO:0047360 1 
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G
ene sym

bol 

Encoding gene  

EC
 num

ber 

Sphingobium
 sp. C

1 

Sphingobium
 sp. R

A
C

03 

Sphingobium
 sp. EP60837 

Sphingobium
 sp. Y

B
L2 

Sphingobium
 sp.SY

K
-6 

Sphingobium
 sp. TK

S 

Sphingobium
 japonicum

 U
T26S 

Sphingobium
 chlorophenolicum

 L-1 

Sphingobium
 sp.M

I1205 

N
ovosphingobium

 sp. PP1Y
 

N
ovosphingobium

 arom
aticivorans 

D
SM

 12444 

Sphingobium
 sp. 22B

 

Osmotic stress 

aqpZ aquaporin family protein - NF NF + NF NF + + + NF NF NF + 

Trehalose biosynthesis and utilization 

otsA alpha,alpha-trehalose-phosphate 
synthase 2.4.1.15 + + + + + + + + + + + + 

otsB trehalose-phosphatase 3.1.3.12 + + + + + + + + + + + + 

treY malto-oligosyltrehalosesynthase 5.4.99.15 NF NF NF + + NF NF NF NF NF NF + 

treZ malto-oligosyltrehalose 
trehalohydrolase 3.2.1.141 NF NF NF + + NF NF NF NF NF NF + 

ga  glycosyldehydrolase family 15 
protein (glucoamylase) 3.2.1.3 + + + + + + + + + + + + 

tre trehalase 3.2.1.28 NF NF NF + NF NF NF NF NF + NF + 

tp 
glycoside hydrolase family 65 
protein (trehalose 
phosphorylase)  

2.4.1.64 NF NF + + NF NF NF + + NF NF + 

Glycogen biosynthesis and utilization 

glgA glycogen synthase 2.4.1.21 NF + + + + + + + + + + + 

glgB glycogen branching enzyme 2.4.1.18 NF + + + + + + + + + + + 

glgC glucose-1-phosphate 
adenyltransferase 2.7.7.27 + + + + + + + + + + + + 

glgP  glycogen/starch/alpha-glucan 
phosphorylase 2.4.1.1 + + + + + + + + + + + + 

glgX glycogen debranching enzyme 3.2.1.- + + + + + + + + + + + + 

PHB biosynthesis 

phbA acetyl-CoA acetyltransferase 2.3.1.9 + + + + + + + + + + + + 

phbB beta-ketoacyl-ACP reductase 1.1.1.36 + + + + + + + + + + + + 

phbC poly-beta-hydroxybutyrate 
polymerase - NF NF + + + + + NF + NF NF + 

phaC class I poly(R)-hydroxyalkanoic 
acid synthase  - + + + + + NF + + + + + + 

Exopolysaccharide biosynthesis 

epsF exopolysaccharide biosynthesis 
glycosyltransferase EpsF 2.4.1.- NF + NF + NF + + NF NF NF NF + 

lgt1 glycosyltransferase,  family 4 
protein - + + + + + + + + + + + + 

lgt2 glycosyltransferase,  family 2  
protein - + + + + + + + + + + + + 

rfbP 
undecaprenyl-
phosphategalactose 
phosphotransferase 

2.7.8.6 NF NF NF NF + + + NF NF NF NF + 
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Table 4: Comparative genome analysis between Sphingobium sp. 22B draft-genome and 
Sphingomonas ¨sensu latu¨ complete genome projects showing the presence of at least one (+) of 
putative genes linked with osmotic stress; trehalose and glycogen biosynthesis and utilization; PHB 
and exopolysaccharide biosynthesis. NF: Putative genes not found.  
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