13 research outputs found

    The effect of Milling Time on Crystal size Sandvik Sanergy

    Get PDF
    Preliminary study material sandvik sanergy as an alternative material for interconnect applications solid oxide fuel cell (SOFC) have been conducted. Sandvik sanergy was milled for 0, 8, 24, and 48 hr with ball milling planetary MTI Corp. The physical properties of small grain size can affect the strength of the alloy when applied as interconnect. In this study, ratio between ball miller and sandvik sanergy was 1:10 aiming to obtain a small grain size. Crystal size characterized by XRD Rigaku Smartlab, morphology of sandvik sanergy after milling observed using SEM Hithaci SU3500 20 kV. Diameter of particles were observed by particle size analyzer (PSA). Results showed that crystal size as well as particle size tended to decrease with the increasing milling time. Discrepancy occurred at 24 hour of milling time and showed agglomeration.©2020 JNSMR UIN Walisongo. All rights reserved

    The effect of Milling Time on Crystal size Sandvik Sanergy

    Get PDF
    Preliminary study material sandvik sanergy as an alternative material for interconnect applications solid oxide fuel cell (SOFC) have been conducted. Sandvik sanergy was milled for 0, 8, 24, and 48 hr with ball milling planetary MTI Corp. The physical properties of small grain size can affect the strength of the alloy when applied as interconnect. In this study, ratio between ball miller and sandvik sanergy was 1:10 aiming to obtain a small grain size. Crystal size characterized by XRD Rigaku Smartlab, morphology of sandvik sanergy after milling observed using SEM Hithaci SU3500 20 kV. Diameter of particles were observed by particle size analyzer (PSA). Results showed that crystal size as well as particle size tended to decrease with the increasing milling time. Discrepancy occurred at 24 hour of milling time and showed agglomeration.©2020 JNSMR UIN Walisongo. All rights reserved

    Karakteristik Morfologi Permukaan pada Polimer PVdF-LiBOB-ZrO2 dan Potensinya untuk Elektrolit Baterai Litium

    Full text link
    Membran elektrolit polimer pada baterai litium ion berfungsi sebagai media transport ion dan sebagai separator antara anoda dan katoda. Dalam penelitian ini, telah dilakukan sintesis membran elektrolit polimer LiBOB (Lithium Bis Oksalato Borate dengan rumus kimia LiB(C2O4)2) dengan menggunakan Polyvilinidine fluoride (PVdF) sebagai matriks dan bahan aditif Zirkonium Oksida (ZrO2). Metoda yang dipergunakan adalah solution cast. Konsentrasi bahan aditif dibuat bervariasi. Membran yang terbentuk dikarakterisasi morfologi permukaan menggunakan Scanning Electrone Microscope (SEM), sifat elektrokimia dengan Cyclic Voltametric (CV) dan kapasitas baterai dengan kurva charge discharge. Hasil penelitian menunjukkan bahwa morfologi permukaan rantai polimer saling berikatan dan tersusun dengan bagus. Pori tertutup oleh rantai polimer secara rata yang berikatan membentuk jaring dan saling bertumpukan pada keadaan amorf. Terjadi reaksi oksidasi dan reduksi pada sel baterai dengan kapasitas charge sekitar 24 mAh pada tegangan 4 volt, sedangkan kapasitas discharge bernilai sama sekitar 24 mAh pada tegangan 4 volt dengan penambahan 10% ZrO2

    Karakteristik Morfologi Permukaan Pada Polimer PVdF-LiBOB-ZrO2 dan Potensinya untuk Elektrolit Baterai Litium

    Get PDF
    Membran elektrolit polimer pada baterai litium ion berfungsi sebagai media transport ion dan sebagai separator antara anoda dan katoda. Dalam penelitian ini, telah dilakukan sintesis membran elektrolit polimer LiBOB (Lithium Bis Oksalato Borate dengan rumus kimia LiB(C2O4)2) dengan menggunakan Polyvilinidine fluoride (PVdF) sebagai matriks dan bahan aditif  Zirkonium Oksida (ZrO2). Metoda yang dipergunakan adalah solution cast. Konsentrasi bahan aditif dibuat bervariasi. Membran yang terbentuk dikarakterisasi morfologi permukaan menggunakan Scanning Electrone Microscope (SEM), sifat elektrokimia dengan Cyclic Voltametric (CV) dan kapasitas baterai dengan kurva charge discharge. Hasil penelitian menunjukkan bahwa morfologi permukaan rantai polimer saling berikatan dan tersusun dengan bagus. Pori tertutup oleh rantai polimer secara rata yang berikatan membentuk jaring dan saling bertumpukan pada keadaan amorf. Terjadi reaksi oksidasi dan reduksi pada sel baterai dengan kapasitas charge sekitar 24 mAh pada tegangan 4 volt, sedangkan kapasitas discharge bernilai sama sekitar 24 mAh pada tegangan 4 volt dengan penambahan 10% ZrO2

    Kajian sifat optis pada glukosa darah

    No full text
    Telah dilakukan pengkajian sifat optis glukosa darah menggunakan sample darah manusia dengan konsentrasi 99 mg/dl, 108 mg/dl,dan 136 mg/dl glukosa didalam darah. Pengamatan sifat optis panjang gelombang pada absorbansi maksimum dan transmitansi maksimum suatu sample darah menggunakan Spektroskopi FTIR dan Spektroskopi UV-Vis, pada spectrum FTIR sample darah berada dalam range bilangan gelombang 4000-450 cm-1.Serapan absorbansi maksimum spectrum FTIR pada bilangan gelombang 3413.65 cm-1,3432.03 cm-1 dan 3465.17 cm-1 mengindikasikan kehadiran gugus fungsi O-H dan vibrasi regangan O-H, sedangkan transmitansi maksimum spectrum FTIR pada bilangan gelombang 1080-870 cm-1 mengindikasikan adanya gugus C-O dan C-H tanpa vibrasi. Pada hasil spektroskopi UV-Vis sinar yang mengalami absorbansi maksimum adalah visible (warna biru) pada range panjang gelombang 435-436 nm. Data hasil spektum digunakan sebagai referensi pengembangan sensor gula darah untuk mendeteksi kadar gula dalam darah sehingga dapat membantu mengobati penderita penyakit Diabetes Mellitus. Kata kunci : panjang gelombang, bilangan gelombang, absorbansi, transmitansi, spektroskopi FTIR,spektroskopi UV-Vis, sensor gula darah, diabetes mellitu

    Kajian sifat optis pada glukosa darah

    No full text
    Telah dilakukan pengkajian sifat optis glukosa darah menggunakan sample darah manusia dengan konsentrasi 99 mg/dl, 108 mg/dl,dan 136 mg/dl glukosa didalam darah. Pengamatan sifat optis panjang gelombang pada absorbansi maksimum dan transmitansi maksimum suatu sample darah menggunakan Spektroskopi FTIR dan Spektroskopi UV-Vis, pada spectrum FTIR sample darah berada dalam range bilangan gelombang 4000-450 cm-1.Serapan absorbansi maksimum spectrum FTIR pada bilangan gelombang 3413.65 cm-1,3432.03 cm-1 dan 3465.17 cm-1 mengindikasikan kehadiran gugus fungsi O-H dan vibrasi regangan O-H, sedangkan transmitansi maksimum spectrum FTIR pada bilangan gelombang 1080-870 cm-1 mengindikasikan adanya gugus C-O dan C-H tanpa vibrasi. Pada hasil spektroskopi UV-Vis sinar yang mengalami absorbansi maksimum adalah visible (warna biru) pada range panjang gelombang 435-436 nm. Data hasil spektum digunakan sebagai referensi pengembangan sensor gula darah untuk mendeteksi kadar gula dalam darah sehingga dapat membantu mengobati penderita penyakit Diabetes Mellitus

    PERFORMANCE STUDY OF LiBOB/LiTFSI ELECTROLYTE SALT IN THE ALL-SOLID-STATE LITHIUM-ION BATTERY

    Get PDF
    PERFORMANCE STUDY OF LiBOB/LiTFSI ELECTROLYTE SALT IN THE ALL-SOLIDSTATE LITHIUM-ION BATTERY. Solid polymer electrolyte is developed mainly to provide safer lithiumion battery upon high temperature operation. In this research, we employ LiBOB and LiTFSI electrolyte salt in various concentration to replace commercially used LiPF6 salt. Solution cast method was performed to produce polymer electrolyte membrane. PVdF-HFP was chosen as polymer matrix due to high dielectric constant, and compatibility to wide array of electrode materials as well as electrolyte salts. Higher amount of electrolyte salts contributes to thicker membrane and hence higher current output of the lithium-ion battery half-cells. SEM, FT-IR spectroscopy, and cyclic voltammetry measurement was conducted to evaluate li-ion battery cell performance. Between the two electrolyte salts used in this experiment, LiTFSI salt exhibited better performance compared to LiBOB

    Effects of 1-hexyl-1-methylimidazolium iodide ionic liquid to poly(vinyl alcohol)–based solid polymer electrolyte

    Get PDF
    A solid polymer electrolyte (SPE) membrane has been fabricated using poly (vinyl alcohol) (PVA) as polymer host dissolved in deionized (DI) water. Lithium bis(oxalato) borate (LiBOB) electrolyte salt and 1-hexyl 1-methylimidazolium iodide (HMII) are incorporated into the membrane to contribute free ions, enhancing ionic conductivity. SPE was produced using the solution cast technique on Petri dishes. Then these slurries were dried at room temperature. The final product is a self-standing opaque membrane with visually homogenous surfaces. Further observation using FE-SEM revealed magnified images of membrane surfaces and cross-sections. Molecule interaction and crystallinity were observed using FT-IR and XRD. Impedance measured using EIS was used to calculate ionic conductivity. It was found that ionic conductivity of pure PVA film was 3.9×10-7 S/cm while ionic conductivity of SPE before and after ionic liquid addition was 4.77×10-7 S/cm and 2.66×10-6 S/cm

    Performance Study of Libob/litfsi Electrolyte Salt in the All-solid-state Lithium-ion Battery

    Full text link
    PERFORMANCE STUDY OF LiBOB/LiTFSI ELECTROLYTE SALT IN THE ALL-SOLIDSTATE LITHIUM-ION BATTERY. Solid polymer electrolyte is developed mainly to provide safer lithiumion battery upon high temperature operation. In this research, we employ LiBOB and LiTFSI electrolyte salt in various concentration to replace commercially used LiPF6 salt. Solution cast method was performed to produce polymer electrolyte membrane. PVdF-HFP was chosen as polymer matrix due to high dielectric constant, and compatibility to wide array of electrode materials as well as electrolyte salts. Higher amount of electrolyte salts contributes to thicker membrane and hence higher current output of the lithium-ion battery half-cells. SEM, FT-IR spectroscopy, and cyclic voltammetry measurement was conducted to evaluate li-ion battery cell performance. Between the two electrolyte salts used in this experiment, LiTFSI salt exhibited better performance compared to LiBOB

    Effects of 1-hexyl-1-methylimidazolium iodide ionic liquid to poly(vinyl alcohol)–based solid polymer electrolyte

    Full text link
    A solid polymer electrolyte (SPE) membrane has been fabricated using poly (vinyl alcohol) (PVA) as polymer host dissolved in deionized (DI) water. Lithium bis(oxalato) borate (LiBOB) electrolyte salt and 1-hexyl 1-methylimidazolium iodide (HMII) are incorporated into the membrane to contribute free ions, enhancing ionic conductivity. SPE was produced using the solution cast technique on Petri dishes. Then these slurries were dried at room temperature. The final product is a self-standing opaque membrane with visually homogenous surfaces. Further observation using FE-SEM revealed magnified images of membrane surfaces and cross-sections. Molecule interaction and crystallinity were observed using FT-IR and XRD. Impedance measured using EIS was used to calculate ionic conductivity. It was found that ionic conductivity of pure PVA film was 3.9×10-7 S/cm while ionic conductivity of SPE before and after ionic liquid addition was 4.77×10-7 S/cm and 2.66×10-6 S/cm
    corecore