8 research outputs found

    Effects of Smoking vs. Nicotine Replacement Therapy During Pregnancy on Childhood Health Outcomes: An Integrative Literature Review

    Get PDF
    PICOT: In pregnant women does the use of nicotine replacement therapy compared to smoking during pregnancy reduce the risk of future childhood health concerns? Methods: A search was conducted on healthcare literature databases (Alt HealthWatch, AMED, CINAHL, and Medline).The initial search yielded 940 results related to the topic. Initial review narrowed the search to 25 articles. Articles were excluded if published before 2008. After reviewing the full articles and evaluating effectiveness of the studies, 12 studies met the criteria. These 12 articles focused on the effects of smoking and childhood outcomes, NRT, and success of NRT. Findings: The articles concluded that NRT may aid in positive health outcomes since it excludes the risk factors associated with carbon monoxide and other carcinogens found in cigarettes. The NRT still delivers significant levels of nicotine exposure to the fetus and leads to pregnancy complications ending in low birth weight and preterm birth. Recommendations: Further studies should be conducted on the effects of nicotine and NRT especially on birth outcomes and future childhood health concerns

    An expansive human regulatory lexicon encoded in transcription factor footprints.

    Get PDF
    Regulatory factor binding to genomic DNA protects the underlying sequence from cleavage by DNase I, leaving nucleotide-resolution footprints. Using genomic DNase I footprinting across 41 diverse cell and tissue types, we detected 45 million transcription factor occupancy events within regulatory regions, representing differential binding to 8.4 million distinct short sequence elements. Here we show that this small genomic sequence compartment, roughly twice the size of the exome, encodes an expansive repertoire of conserved recognition sequences for DNA-binding proteins that nearly doubles the size of the human cis-regulatory lexicon. We find that genetic variants affecting allelic chromatin states are concentrated in footprints, and that these elements are preferentially sheltered from DNA methylation. High-resolution DNase I cleavage patterns mirror nucleotide-level evolutionary conservation and track the crystallographic topography of protein-DNA interfaces, indicating that transcription factor structure has been evolutionarily imprinted on the human genome sequence. We identify a stereotyped 50-base-pair footprint that precisely defines the site of transcript origination within thousands of human promoters. Finally, we describe a large collection of novel regulatory factor recognition motifs that are highly conserved in both sequence and function, and exhibit cell-selective occupancy patterns that closely parallel major regulators of development, differentiation and pluripotency

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    SPARK: A US Cohort of 50,000 Families to Accelerate Autism Research

    No full text
    The Simons Foundation Autism Research Initiative (SFARI) has launched SPARKForAutism. org, a dynamic platform that is engaging thousands of individuals with autism spectrum disorder (ASD) and connecting them to researchers. By making all data accessible, SPARK seeks to increase our understanding of ASD and accelerate new supports and treatments for ASD

    A map of human genome variation from population-scale sequencing

    Get PDF
    The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10−8 per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic researc
    corecore