304 research outputs found

    Nonparametric Tests of Collectively Rational Consumption Behavior: An Integer Programming Procedure

    Get PDF
    We present an IP-based nonparametric (revealed preference) testing proce- dure for rational consumption behavior in terms of general collective models, which include consumption externalities and public consumption. An empiri- cal application to data drawn from the Russia Longitudinal Monitoring Survey (RLMS) demonstrates the practical usefulness of the procedure. Finally, we present extensions of the testing procedure to evaluate the goodness-of-fit of the collective model subject to testing, and to quantify and improve the power of the corresponding collective rationality tests.collective consumption model;revealed preferences;nonparametric rationality tests;integer programming (IP)

    Satellite remote sensing reveals a positive impact of living oyster reefs on microalgal biofilm development

    Get PDF
    Satellite remote sensing (RS) is routinely used for the large-scale monitoring of microphytobenthos (MPB) biomass in intertidal mudflats and has greatly improved our knowledge of MPB spatio-temporal variability and its potential drivers. Processes operating on smaller scales however, such as the impact of benthic macrofauna on MPB development, to date remain underinvestigated. In this study, we analysed the influence of wild Crassostrea gigas oyster reefs on MPB biofilm development using multispectral RS. A 30-year time series (1985-2015) combining high-resolution (30 m) Landsat and SPOT data was built in order to explore the relationship between C. gigas reefs and MPB spatial distribution and seasonal dynamics, using the normalized difference vegetation index (NDVI). Emphasis was placed on the analysis of a before-after control-impact (BACI) experiment designed to assess the effect of oyster killing on the surrounding MPB biofilms. Our RS data reveal that the presence of oyster reefs positively affects MPB biofilm development. Analysis of the historical time series first showed the presence of persistent, highly concentrated MPB patches around oyster reefs. This observation was supported by the BACI experiment which showed that killing the oysters (while leaving the physical reef structure, i.e. oyster shells, intact) negatively affected both MPB biofilm biomass and spatial stability around the reef. As such, our results are consistent with the hypothesis of nutrient input as an explanation for the MPB growth-promoting effect of oysters, whereby organic and inorganic matter released through oyster excretion and biodeposition stimulates MPB biomass accumulation. MPB also showed marked seasonal variations in biomass and patch shape, size and degree of aggregation around the oyster reefs. Seasonal variations in biomass, with higher NDVI during spring and autumn, were consistent with those observed on broader scales in other European mudflats. Our study provides the first multi-sensor RS satellite evidence of the promoting and structuring effect of oyster reefs on MPB biofilms

    Nonparametric Tests of Collectively Rational Consumption Behavior:An Integer Programming Procedure

    Get PDF

    Ethical climate in a Belgian psychiatric inpatient setting: relation with burnout and engagement in psychiatric nurses

    Get PDF
    Research suggests a relation between the ethical climate – that is, the organisational conditions and practices that affect the way ethical issues with regard to patient care are discussed and decided - and job satisfaction of nurses. Yet no study to date has investigated the relationship between ethical climate and job satisfaction in psychiatric nurses. This study aimed to address this critical gap in our knowledge by investigating the relationships among ethical climate and features of both burnout and engagement based on the Job Demands-Resources Model (JD - R model) in a large cross-sectional study of 265 nurses working in a large psychiatric inpatient hospital in Flanders, Belgium. Correlational and multiple hierarchical regression analyses were used to investigate the relationship between ethical climate, burnout and engagement. In addition, based on the JD-R model, we also investigated whether engagement mediated the relationship between ethical climate on the one hand and job satisfaction and turnover intention on the other and whether ethical climate moderated the relationship between emotional burden and burnout. Results showed that a positive ethical climate was related to lower levels of emotional exhaustion and distancing and higher levels of engagement and job satisfaction. Furthermore, although ethical climate did not buffer against the effects of emotional burden on burnout, higher levels of engagement explained in part the relationship between ethical climate and job satisfaction

    Complex response of dinoflagellate cyst distribution patterns to cooler early Oligocene oceans

    Get PDF
    Previous studies have made extensive use of dinoflagellate cysts to reconstruct past sea surface temperature (SST). Analysis of associations of dinoflagellate cysts using two new ocean datasets for the mid Eocene (Bartonian) and early Oligocene (Rupelian) reveals clear latitudinally constrained distributions for the Bartonian, but unexpected changes in their Rupelian distribution; a significant number of species with low and mid latitude northern hemisphere occurrences in the Bartonian extend their northward ranges in the Rupelian, including some forms characterised as ‘warm water’ by previous studies. This suggests either that dinoflagellates are faithfully tracking a complex oceanographic response to Rupelian cooling, or that dinoflagellate sensitivity/adaptability to a range of ecological variables means that at a global scale their distributions are not primarily controlled by sea surface temperature-variability. Previous use of dinoflagellate cysts for palaeoclimate work has relied on rather subjective and inconsistent identification of ‘warm’ and ‘cold’ water forms, rather than comprehensive analysis of community associations at the global-scale. It is clear from this study that a better understanding of the (palaeo-)ecology of dinoflagellates and their cysts is required. Rupelian dinoflagellate cyst distribution may reflect changes in a range of environmental variables linked to early Oligocene climate-cooling, for example changes in nutrient fluxes triggered by glacially-induced base-level fall; complex reorganisation of ocean current systems between the Bartonian and Rupelian, or muted changes to Rupelian summer SSTs in the northern hemisphere that have previously been reported. Many extant dinoflagellate species also exhibit relatively broad temperature tolerance. Moreover, they have potentially extensive cryptic diversity, and are able to produce dormant cysts during short-lived environmental deterioration, all of which may act to limit the value of undifferentiated dinoflagellate cyst assemblages for identifying climate signals

    Niche complementarity and facilitation drive positive diversity effects on biomass production in experimental benthic diatom biofilms

    Get PDF
    Up to now, relatively few diversity-production experiments have been performed using microorganisms. Benthic diatom communities from estuarine intertidal mudflats are especially interesting for this purpose as they are relatively species poor and are thus more easy to simulate in laboratory conditions. We studied the effect of diversity on biomass production during microcosm experiments with diatoms assembled in combinations of up to eight species. Our results demonstrate a highly positive effect of biodiversity on production, with transgressive overyielding occurring in more than half of the combinations. These strong positive diversity effects could largely be attributed to positive complementarity effects (covering both niche complementarity and facilitation), although negative selection effects effects at higher diversities. We found a significant positive relation between functional diversity and the net biodiversity effects, indicating niche complementarity. In addition, we provide one of the first mechanistic evidences for facilitation by which biodiversity can enhance ecosystem functioning. This was demonstrated by the improved growth of Cylindrotheca closterium after addition of spent medium obtained from other diatom species. The stimulated growth of C. closterium was explained by a shift to mixotrophic growth with a down-regulation of the photosynthetic apparatus
    • 

    corecore