- 1 Complex response of dinoflagellate cyst distribution patterns to cooler early
- 2 Oligocene oceans
- 3
- 4 Mark A. Woods^a, Thijs R. A. Vandenbroucke^b, Mark Williams^c, James B. Riding^a,
- 5 Stijn De Schepper^d, Koen Sabbe^e
- 6
- ⁷ ^a: British Geological Survey Environmental Science Centre, Keyworth, Nottingham,
- 8 NG12 5GG, UK. maw@bgs.ac.uk; jbri@bgs.ac.uk
- 9 ^b: UMR 8217 du CNRS : Géosystèmes, Université Lille 1, Avenue Paul Langevin,
- 10 bâtiment SN5, 59655 Villeneuve d'Ascq Cedex, France. Thijs.Vandenbroucke@univ-
- 11 lille1.fr
- ¹² ^c: Department of Geology, University of Leicester, University Road, Leicester, LE1
- 13 7RH, UK. mri@leicester.ac.uk
- ^d: Department of Earth Science, University of Bergen, Allégaten 41, 5007 Bergen,
- 15 Norway. stijn.deschepper@geo.uib.no
- ^e: Protistology and Aquatic Ecology, Department of Biology, Ghent University,
- 17 Krijgslaan 281-S8, 9000 Ghent, Belgium. Koen.Sabbe@UGent.be
- 18
- 19 *: Corresponding author at: British Geological Survey Environmental Science Centre,
- 20 Keyworth, Nottingham, NG12 5GG, UK. Tel.: +44 115 9363155. E-mail address:
- 21 maw@bgs.ac.uk (M. A. Woods).
- 22

23 Abstract

- 24 Previous studies have made extensive use of dinoflagellate cysts to reconstruct past
- 25 sea surface temperature (SST). Analysis of associations of dinoflagellate cysts using

26	two new ocean datasets for the mid Eocene (Bartonian) and early Oligocene
27	(Rupelian) reveals clear latitudinally constrained distributions for the Bartonian, but
28	unexpected changes in their Rupelian distribution; a significant number of species
29	with low and mid-latitude northern hemisphere occurrences in the Bartonian extend
30	their northward ranges in the Rupelian, including some forms characterised as 'warm
31	water' by previous studies. This suggests either that dinoflagellates are faithfully
32	tracking a complex oceanographic response to Rupelian cooling, or that dinoflagellate
33	sensitivity/adaptability to a range of ecological variables means that at a global scale
34	their distributions are not primarily controlled by sea surface temperature-variability.
35	
36	Previous use of dinoflagellate cysts for palaeoclimate work has relied on rather
37	subjective and inconsistent identification of 'warm' and 'cold' water forms, rather
38	than comprehensive analysis of community associations at the global-scale. It is clear
39	from this study that a better understanding of the (palaeo-)ecology of dinoflagellates
40	and their cysts is required.
41	
42	Rupelian dinoflagellate cyst distribution may reflect changes in a range of
43	environmental variables linked to early Oligocene climate-cooling, for example
44	changes in nutrient fluxes triggered by glacially-induced base-level fall; complex
45	reorganisation of ocean current systems between the Bartonian and Rupelian, or
46	muted changes to Rupelian summer SSTs in the northern hemisphere that have
47	previously been reported. Many extant dinoflagellate species also exhibit relatively
48	broad temperature tolerance. Moreover, they have potentially extensive cryptic
49	diversity, and are able to produce dormant cysts during short-lived environmental

- 50 deterioration, all of which may act to limit the value of undifferentiated dinoflagellate
- 51 cyst assemblages for identifying climate signals.
- 52

53 Keywords: dinoflagellate cysts; Eocene; Oligocene; palaeoclimatology

54

55 **1. Introduction**

56

57 Previous work by Salzmann et al. (2008) and Pound et al. (2011, 2012) has

58 established a robust database methodology (Tertiary Environments Vegetation System

59 – TEVIS) for interpreting patterns of Cenozoic vegetation using data 'mined' from

60 historical literature. Similarly, Vandenbroucke et al. (2010) used multivariate analysis

61 of published occurrences of the enigmatic Chitinozoa to examine sea surface

62 temperature (SST) relationships in the Late Ordovician. Here, we adapt the TEVIS

63 methodology to obtain data from published literature on dinoflagellate cysts, and use

64 them as a proxy for investigating the response of the marine realm to cooling at the

65 Eocene – Oligocene transition. Dinoflagellates have formed a component of the

66 microplankton in aquatic ecosystems since the Mid Triassic. They are ubiquitous in

67 modern oceans, as well as brackish and freshwater environments, and include

68 phototrophic, heterotrophic and mixotrophic species (Fensome et al., 1993; Jeong et

al., 2010). Their fossilised organic remains (cysts) are the basis for biostratigraphical

schemes (Brinkhuis and Biffi, 1993; Van Simaeys et al., 2005; Williams et al., 2004)

and palaeoenvironmental analysis (Sluijs et al., 2005; Versteegh and Zonneveld,

1994). Their use to discriminate between offshore to near-shore environments (Dale,

1996; Wall et al., 1977) has made them invaluable for the identification of different

systems tracts in sequence stratigraphy (Brinkhuis, 1994; Sluijs et al., 2005), and the

apparent strong relationship between the global distribution of extant marine
dinoflagellates and SST (e.g. Marret and Zonneveld, 2003; Zonneveld et al., 2013)
has formed the basis of their widespread use in palaeoclimate reconstruction and
tracking palaeoclimate oscillations (Brinkhuis and Biffi, 1993; Brinkhuis et al., 1998;
Esper and Zonneveld, 2007; Masure and Vrielynck, 2009; Mudie et al., 2001; Sluijs et
al., 2005; Wall et al., 1977).

81

82 This work reconstructs global distributions of dinoflagellate cysts between a warmer 83 mid Eocene (Bartonian) Earth and a cooler early Oligocene (Rupelian) Earth, and 84 uses multivariate analysis and range data to investigate the extent to which these patterns are significant for understanding the pattern of ocean temperature change 85 86 across the Eocene - Oligocene boundary. We also explore how our results might 87 reveal potential weaknesses in the ability of dinoflagellate cysts to track global climate change. We examine the hypothesis that at a global scale, dinoflagellate cyst 88 89 latitudinal distributions shifted equatorward from the late mid Eocene to the early 90 Oligocene in response to climate cooling. Published data on planktonic foraminifera 91 in Tanzania, showing a major faunal turnover and size reduction of individual species 92 at the Eocene/Oligocene boundary, suggests that even the modest SST reductions at low latitudes had a significant impact on marine habitats (Wade and Pearson, 2008), 93 94 and a strong biotic signal in dinoflagellate cyst data from this time interval might 95 therefore be anticipated. Previous studies using dinoflagellate cysts to track Eocene and/or Oligocene climate change (e.g. Bijl et al., 2011; Brinkhuis, 1994; Brinkhuis 96 97 and Biffi, 1993; Guerstein et al., 2008) have tended to focus on relatively limited 98 geographical areas, rather than adopting a methodology to track ocean-wide species 99 responses across this time interval.

102	A transition in global climate state began in the latest Eocene (Wade et al., 2012),
103	probably triggered by a reduction in atmospheric CO ₂ below a critical threshold
104	(Anderson et al., 2011; DeConto and Pollard, 2003; Pagani et al., 2011; Pearson et al.,
105	2009). It culminated in the establishment of the East Antarctic Ice Sheet associated
106	with further cooling in the early Oligocene, termed Oi-1. The widely recognised early
107	Oligocene cooling event (Eldrett et al., 2009; Liu et al., 2009; Wei, 1991) lasted about
108	400,000 years, and is dated to about 34 Ma (Fig. 1).
109	
110	In the mid Eocene, annual mean SSTs ranged from c. 35° C at the equator to 15 to >20
111	°C at high latitudes (Bijl et al., 2009). Corresponding values for the early Oligocene
112	were reduced by about 5°C at mid to high latitudes, with smaller temperature
113	reductions in tropical and equatorial regions (Liu et al., 2009). Oxygen isotope data
114	from benthic foraminifera show that the Bartonian was a relatively warm and stable
115	climatic interval compared to the relatively cooler Rupelian (Fig. 1). Apart from a
116	transient warming event at 40 Ma (Bohaty et al., 2009), termed the Middle Eocene
117	Climate Optimum (Bohaty and Zachos, 2003), temperatures in the Bartonian mostly
118	show a gradual fall from their peak in the late Paleocene and early Eocene (Bijl et al.,
119	2009). Imprinted on this overall trend are higher frequency cycles of orbitally-driven
120	climate change that variably affected SST values (Sloan and Huber, 2001; Burgess et
121	al., 2008; Pälike et al., 2006; Wade and Pälike, 2004), as well as larger regional
122	temperature oscillations in SST, of perhaps 10°C, that have been reported in the
123	uppermost middle Eocene (presumably Bartonian) of the subtropical western North
124	Atlantic (Wade and Kroon, 2002). However, none of these fluctuations are inferred to

125	have had a sustained impact on marine ecology. In the lower and middle Eocene,
126	coccolithophores exhibit maximum species richness for the Paleogene (Bown et al.,
127	2004), and data from Eocene benthonic foraminifera suggests relatively stable
128	phyletic composition (Less and Özcan, 2012). As remarked by MacLeod et al. (2000),
129	middle Eocene planktonic foraminifera from low and mid-latitudes show a broad and
130	fairly uniform distribution of morphotypes, with almost constant relative abundance
131	between zones P9 (Ypresian) and P14 (Bartonian) (Fig. 2); significant changes in both
132	Paleogene planktonic foraminifera (MacLeod et al., 2000) and coccolithophores
133	(Bown et al., 2004) coincided with major climate-change events, including the Eocene
134	- Oligocene transition.
135	
136	3. Material
137	
120	
138	Two stratigraphically well-defined time slabs were selected for dinoflagellate cyst
138	Two stratigraphically well-defined time slabs were selected for dinoflagellate cyst analysis; the Bartonian (late mid Eocene; $41.2 - 37.8$ Ma) and Rupelian (early
138 139 140	Two stratigraphically well-defined time slabs were selected for dinoflagellate cyst analysis; the Bartonian (late mid Eocene; $41.2 - 37.8$ Ma) and Rupelian (early Oligocene; $33.9 - 28.1$ Ma) (Figs 2, 3). Time slabs were chosen for optimum potential
138 139 140 141	Two stratigraphically well-defined time slabs were selected for dinoflagellate cyst analysis; the Bartonian (late mid Eocene; $41.2 - 37.8$ Ma) and Rupelian (early Oligocene; $33.9 - 28.1$ Ma) (Figs 2, 3). Time slabs were chosen for optimum potential for climate contrast between them, whilst minimising both temporal separation and
138 139 140 141 142	Two stratigraphically well-defined time slabs were selected for dinoflagellate cyst analysis; the Bartonian (late mid Eocene; $41.2 - 37.8$ Ma) and Rupelian (early Oligocene; $33.9 - 28.1$ Ma) (Figs 2, 3). Time slabs were chosen for optimum potential for climate contrast between them, whilst minimising both temporal separation and the influence of transient climate effects within them. The Priabonian (latest Eocene)
138 139 140 141 142 143	Two stratigraphically well-defined time slabs were selected for dinoflagellate cyst analysis; the Bartonian (late mid Eocene; $41.2 - 37.8$ Ma) and Rupelian (early Oligocene; $33.9 - 28.1$ Ma) (Figs 2, 3). Time slabs were chosen for optimum potential for climate contrast between them, whilst minimising both temporal separation and the influence of transient climate effects within them. The Priabonian (latest Eocene) is less attractive for investigation. It straddles the onset of the climate cooling event
 138 139 140 141 142 143 144 	Two stratigraphically well-defined time slabs were selected for dinoflagellate cyst analysis; the Bartonian (late mid Eocene; $41.2 - 37.8$ Ma) and Rupelian (early Oligocene; $33.9 - 28.1$ Ma) (Figs 2, 3). Time slabs were chosen for optimum potential for climate contrast between them, whilst minimising both temporal separation and the influence of transient climate effects within them. The Priabonian (latest Eocene) is less attractive for investigation. It straddles the onset of the climate cooling event that extends into the Rupelian (Houben et al., 2012), but variable quality of
 138 139 140 141 142 143 144 145 	Two stratigraphically well-defined time slabs were selected for dinoflagellate cyst analysis; the Bartonian (late mid Eocene; $41.2 - 37.8$ Ma) and Rupelian (early Oligocene; $33.9 - 28.1$ Ma) (Figs 2, 3). Time slabs were chosen for optimum potential for climate contrast between them, whilst minimising both temporal separation and the influence of transient climate effects within them. The Priabonian (latest Eocene) is less attractive for investigation. It straddles the onset of the climate cooling event that extends into the Rupelian (Houben et al., 2012), but variable quality of stratigraphical data in published accounts means that accurate and consistent
 138 139 140 141 142 143 144 145 146 	Two stratigraphically well-defined time slabs were selected for dinoflagellate cyst analysis; the Bartonian (late mid Eocene; 41.2 – 37.8 Ma) and Rupelian (early Oligocene; 33.9 – 28.1 Ma) (Figs 2, 3). Time slabs were chosen for optimum potential for climate contrast between them, whilst minimising both temporal separation and the influence of transient climate effects within them. The Priabonian (latest Eocene) is less attractive for investigation. It straddles the onset of the climate cooling event that extends into the Rupelian (Houben et al., 2012), but variable quality of stratigraphical data in published accounts means that accurate and consistent interpretation of the dinoflagellate cyst record with respect to the cooling event
 138 139 140 141 142 143 144 145 146 147 	Two stratigraphically well-defined time slabs were selected for dinoflagellate cyst analysis; the Bartonian (late mid Eocene; $41.2 - 37.8$ Ma) and Rupelian (early Oligocene; $33.9 - 28.1$ Ma) (Figs 2, 3). Time slabs were chosen for optimum potential for climate contrast between them, whilst minimising both temporal separation and the influence of transient climate effects within them. The Priabonian (latest Eocene) is less attractive for investigation. It straddles the onset of the climate cooling event that extends into the Rupelian (Houben et al., 2012), but variable quality of stratigraphical data in published accounts means that accurate and consistent interpretation of the dinoflagellate cyst record with respect to the cooling event would be problematic, or would require a subjective interpretation to be imposed.
 138 139 140 141 142 143 144 145 146 147 148 	Two stratigraphically well-defined time slabs were selected for dinoflagellate cyst analysis; the Bartonian (late mid Eocene; $41.2 - 37.8$ Ma) and Rupelian (early Oligocene; $33.9 - 28.1$ Ma) (Figs 2, 3). Time slabs were chosen for optimum potential for climate contrast between them, whilst minimising both temporal separation and the influence of transient climate effects within them. The Priabonian (latest Eocene) is less attractive for investigation. It straddles the onset of the climate cooling event that extends into the Rupelian (Houben et al., 2012), but variable quality of stratigraphical data in published accounts means that accurate and consistent interpretation of the dinoflagellate cyst record with respect to the cooling event would be problematic, or would require a subjective interpretation to be imposed. Literature records of dinoflagellate cysts in Bartonian and Rupelian successions were
 138 139 140 141 142 143 144 145 146 147 148 149 	Two stratigraphically well-defined time slabs were selected for dinoflagellate cyst analysis; the Bartonian (late mid Eocene; $41.2 - 37.8$ Ma) and Rupelian (early Oligocene; $33.9 - 28.1$ Ma) (Figs 2, 3). Time slabs were chosen for optimum potential for climate contrast between them, whilst minimising both temporal separation and the influence of transient climate effects within them. The Priabonian (latest Eocene) is less attractive for investigation. It straddles the onset of the climate cooling event that extends into the Rupelian (Houben et al., 2012), but variable quality of stratigraphical data in published accounts means that accurate and consistent interpretation of the dinoflagellate cyst record with respect to the cooling event would be problematic, or would require a subjective interpretation to be imposed. Literature records of dinoflagellate cysts in Bartonian and Rupelian successions were used to construct two new global datasets of taxa present within these time slabs at

150 different localities. These datasets contain species (presence/absence) and location

151 data, chronostratigraphical, biostratigraphical, lithostratigraphical and

- 152 palaeoenvironmental information. Raw data were obtained by searches of digital
- 153 reference indexes, institutional library catalogues, and thematic literature collections,
- 154 the latter particularly including the global palynological reference collection
- assembled by John Williams at the Natural History Museum (London). Potential
- 156 limitation of Rupelian data as a consequence of sea level fall associated with early
- 157 Oligocene glaciation of Antarctica is not reflected by the relative sizes of our two
- 158 datasets, although it may potentially affect its relative completeness in particular
- 159 palaeoenvironments.
- 160
- 161 Dating: chronostratigraphy, biostratigraphy, magnetostratigraphy

162 Geochronometric, biostratigraphical (dinoflagellate cyst, planktonic foraminifera,

163 calcareous nannofossil) and magnetostratigraphical criteria are used to recognise the

164 Bartonian and Rupelian. These stratigraphical criteria are summarised in Figures 2

and 3. Confidence of assignment to a particular time slab is based on assessment of

166 published stratigraphical data (1 = high confidence; 3 = low confidence), and this is

167 indicated in a separate field in the data compilation (see Supplementary Data).

168 Brinkhuis and Biffi (1993) noted that long-range biostratigraphical correlation using

- 169 dinoflagellate cysts is problematic because of the effects of provincialism and
- 170 palaeoenvironment, and this may affect the confidence of age assignment of sites
- 171 where dinoflagellate cysts alone are the basis of age diagnosis. Generally, sites dated
- 172 with low confidence are those that are likely to contain at least parts of
- 173 chronostratigraphical intervals adjacent to either the Bartonian or Rupelian.
- 174 Nevertheless, in all these cases their dinoflagellate cyst floras are highly likely to span

- 175 the time slabs critical to this investigation; other sites that potentially include the
- 176 Bartonian or Rupelian, but for which confirmatory stratigraphical data were scant,
- 177 were excluded from this study. In some cases age confidence was enhanced by
- 178 omitting sample data from parts of successions where dating evidence was much less
- 179 certain.

- 181 Location
- 182 Location data are recorded as longitude and latitude, either directly transcribed from
- 183 the relevant publication, or derived from Google EarthTM using published
- 184 geographical details. Where the quality of published data precludes a precise location
- 185 fix, then a site is defined by a radius from a designated point. All modern longitude
- and latitude data for sites were converted to values relevant to the Bartonian or
- 187 Rupelian (Fig. 4C, D) using PALEOMAP PointTracker software for global
- 188 palaeogeography reconstructions at 40 Ma (early Bartonian) and 30 Ma (mid
- 189 Rupelian).
- 190
- 191 Lithostratigraphy and palaeoenvironment
- 192 Where available, lithostratigraphical and palaeoenvironmental information has been
- 193 included in the datasets. Together, these data provide an indication of how nearshore
- 194 or basinal a succession is likely to be, and are a guide to the likely influence of local
- 195 palaeogeographical factors on dinoflagellate cyst composition.
- 196
- 197
- 198
- 199

200 Dinoflagellate cyst data, taxonomy and nomenclature

201	Following the rationale used to build the Cenozoic vegetation databases using TEVIS
202	(Salzmann et al., 2008; Pound et al., 2011, 2012), there is minimal reinterpretation of
203	the primary published data, which in this study represents the dedicated work of
204	dinoflagellate specialists. This is an essential feature of our methodology, which
205	permits rapid construction of global-scale databases, focusing on large-scale trends
206	that are beyond the scope of individual studies. The sheer quantity of data assembled,
207	and the broad-scale of the analysis, militate against problems caused by variable
208	taxonomic interpretation in source literature used to build the databases. There are
209	obvious practical problems in attempting to directly re-interpret such large volumes of
210	data. Extensive indirect re-interpretation of published records is also undesirable,
211	because strict application of current understanding of taxonomic and range concepts is
212	likely to falsely eliminate data that represent genuine records of taxa that were
213	previously differently interpreted.
213 214	previously differently interpreted.
213214215	previously differently interpreted. Notwithstanding the above, some limited screening of taxonomic nomenclature has
213214215216	previously differently interpreted. Notwithstanding the above, some limited screening of taxonomic nomenclature has been applied where this is clearly beneficial for data analysis, including removal of
 213 214 215 216 217 	previously differently interpreted. Notwithstanding the above, some limited screening of taxonomic nomenclature has been applied where this is clearly beneficial for data analysis, including removal of obvious species synonyms. In a few cases, where clear doubt existed about species
 213 214 215 216 217 218 	previously differently interpreted. Notwithstanding the above, some limited screening of taxonomic nomenclature has been applied where this is clearly beneficial for data analysis, including removal of obvious species synonyms. In a few cases, where clear doubt existed about species records, these were checked against any associated published figures/plates, or the
 213 214 215 216 217 218 219 	previously differently interpreted. Notwithstanding the above, some limited screening of taxonomic nomenclature has been applied where this is clearly beneficial for data analysis, including removal of obvious species synonyms. In a few cases, where clear doubt existed about species records, these were checked against any associated published figures/plates, or the records deleted. Only taxa identified to species-level are included in the datasets;
 213 214 215 216 217 218 219 220 	previously differently interpreted. Notwithstanding the above, some limited screening of taxonomic nomenclature has been applied where this is clearly beneficial for data analysis, including removal of obvious species synonyms. In a few cases, where clear doubt existed about species records, these were checked against any associated published figures/plates, or the records deleted. Only taxa identified to species-level are included in the datasets; identifications qualified by "?" and "cf." are regarded as definite for the purposes of
 213 214 215 216 217 218 219 220 221 	previously differently interpreted. Notwithstanding the above, some limited screening of taxonomic nomenclature has been applied where this is clearly beneficial for data analysis, including removal of obvious species synonyms. In a few cases, where clear doubt existed about species records, these were checked against any associated published figures/plates, or the records deleted. Only taxa identified to species-level are included in the datasets; identifications qualified by "?" and "cf." are regarded as definite for the purposes of the statistical analyses, but records qualified by "aff." are excluded. No informal
 213 214 215 216 217 218 219 220 221 222 	previously differently interpreted. Notwithstanding the above, some limited screening of taxonomic nomenclature has been applied where this is clearly beneficial for data analysis, including removal of obvious species synonyms. In a few cases, where clear doubt existed about species records, these were checked against any associated published figures/plates, or the records deleted. Only taxa identified to species-level are included in the datasets; identifications qualified by "?" and "cf." are regarded as definite for the purposes of the statistical analyses, but records qualified by "aff." are excluded. No informal nomenclature, prevalent in some older publications, has been included, but data fields
 213 214 215 216 217 218 219 220 221 222 223 	previously differently interpreted. Notwithstanding the above, some limited screening of taxonomic nomenclature has been applied where this is clearly beneficial for data analysis, including removal of obvious species synonyms. In a few cases, where clear doubt existed about species records, these were checked against any associated published figures/plates, or the records deleted. Only taxa identified to species-level are included in the datasets; identifications qualified by "?" and "cf." are regarded as definite for the purposes of the statistical analyses, but records qualified by "aff." are excluded. No informal nomenclature, prevalent in some older publications, has been included, but data fields describing the higher taxonomic classification of species have been added. An

225	names appearing in our dataset largely reflect understanding of dinoflagellate cyst
226	taxonomy at the time of publication. Current species concepts, and the stratigraphical
227	ranges of taxa, may be broader or narrower than those appearing in historical
228	literature.
229	
230	Potential distortion of ecological conclusions based on this methodology can arise
231	where there is reworking of dinoflagellate cysts, either through erosion of pre-existing
232	rock successions, or by pre-burial lateral transport of dinoflagellate cysts within
233	sedimentary basins. Reworked taxa, identified in published source data for this study
234	(e.g. De Coninck, 1986; Frith, 1996; Heilmann-Clausen and Van Simaeys, 2005;
235	Jaramillo and Oboh-Ikuenobe, 1999; McMahon, 1997; Schiøler, 2005) or inferred
236	from known range data, were excluded from the analysis. The possibility that some
237	reworked taxa form part of our analysis cannot be excluded. However, the large
238	quantity of data analysed in this study coupled with evidence of limited reworking of
239	dinoflagellate cysts in younger sediments (Mertens et al., 2009; Verleye and Louwye,
240	2010), suggest that this factor is unlikely to bias our results. Mertens et al. (2009)
241	reported that reworking affected a maximum of 7% of the cysts recorded in
242	Quaternary sediments at four widely distributed sites, and statistical analysis of shelf
243	to basin transects in the south-east Pacific found negligible evidence of lateral
244	transport of cysts, including by near-shore and bottom water currents (Verleye and
245	Louwye, 2010).
246	
247	The datasets contain presence/absence data for dinoflagellate cysts from 71 Bartonian
248	sites and 123 Rupelian sites (Fig. 4; Appendix 1A). Figure 4 shows that there is a

249 general paucity of low latitude and southern hemisphere data for each time interval,

250	but in the northern hemisphere data coverage is good. A total of 460 taxa are
251	represented in the Bartonian dataset, and 492 taxa in the Rupelian dataset, with 268
252	taxa occurring in both time slabs, representing more than 50% of the taxa in each
253	individual time slab. Information about relative species abundance in samples was
254	collected or derived where possible, but inconsistency in the quality of these data
255	precluded their use in statistical analyses. Similar problems with abundance data were
256	encountered by Masure and Vrielynck (2009) in their global analysis of Upper Albian
257	dinoflagellate cysts. The large percentage of taxa shared by the Bartonian and
258	Rupelian is reflected in the global plot of dinoflagellate generic diversity across the
259	Eocene – Oligocene boundary, which is almost flat (MacRae et al., 1996).
260	Assessments of individual localities show that, despite the range of
261	palaeoenvironments represented in this study, many Bartonian and Rupelian sites
262	have more than 70% of taxa common to both time slabs; localities with a lower
263	proportion of shared taxa tend to occur at higher palaeolatitudes. The high percentage
264	of shared taxa between the time slabs mitigates the impact of biological factors (e.g.
265	evolutionary change) on the interpretation of our results.
266	Copies of all the datasets, and the references from which they were compiled, are
267	provided as Supplementary Data. The author citations, with the relevant
268	bibliographical references, of all the dinoflagellate cyst taxa at and below generic
269	level which are quoted in this contribution and associated Supplementary Data can be
270	found in Fensome and Williams (2004), or online at:
271	http://dinoflaj.smu.ca/~macrae/pdf/dinoflaj.pdf.
272	
273	4. Method

275	We used ordination techniques to study relationships between sample sites on the
276	basis of their full dinoflagellate cyst composition (presence/absence data). Ordination
277	techniques allow visualisation of large datasets in low-dimensional (usually two-
278	dimensional) ordination diagrams, in which the ordination axes represent the most
279	important gradients in species composition (Jongman et al. 1995). These can then be
280	related to known environmental variation, i.e. palaeolatitude, depositional basin
281	(North Sea, Arctic, Atlantic, Tethys, Indian and Pacific Ocean) and
282	palaeoenvironment (position of sites with respect to the shore, i.e. inshore vs.
283	offshore). Multivariate analysis has previously been used by Versteegh and
284	Zonneveld (1994), Marret and Zonneveld (2003), Esper and Zonneveld (2007), and
285	Zonneveld et al. (2013) to investigate the relationship between dinoflagellate cyst
286	distribution and environmental parameters.
287	
288	Three primary datasets have been investigated: (1) a Bartonian dataset comprising
289	460 species and 71 sites, (2) a Rupelian dataset with 492 species and 123 sites, and (3)
290	a combined dataset comprising only those species that occurred in both time slabs
291	(268 species and 175 sites). Analysis of the latter dataset allowed comparison of
292	potential latitudinal shifts in species distributions between the Bartonian and Rupelian
293	sites. All ordination analyses were performed using the program CANOCO for
294	Windows 4.5 (ter Braak and Smilauer 1998). To aid the analysis of particular
295	variables other than latitudinal position, key features of the primary data (for example,
296	ocean basin, inshore/offshore palaeoenvironment) were introduced as qualitative
297	(dummy) variables (cf. ter Braak and Smilauer, 1998).
200	

299	Preliminary Detrended Correspondence Analyses (DCA) revealed strong turnover in
300	species composition between the samples in all datasets investigated ('length of
301	gradient' $>$ 4), indicating that unimodal ordination techniques were the most
302	appropriate for all analyses (Jongman et al., 1995). DCA was used instead of
303	Correspondence Analysis (CA) to eliminate the arch effects in the analyses (ter Braak
304	and Smilauer 1998). Analyses were initially performed on datasets (1) and (2) (Figs 5
305	and 6); subsequently the data were 'filtered' by removing groups of samples from
306	further analyses, in order to eliminate confounding basin-specific effects
307	(provincialism) (see Supplementary Data: Suppl. Figs 1 and 2). In a final analysis of
308	the combined Bartonian and Rupelian data (dataset (3), Fig. 7), a further data
309	reduction (sample elimination) was performed in order to minimise basin-specific and
310	potential palaeoenvironmental effects. In this last analysis, the Bartonian samples
311	were active (i.e. the DCA was only based on these samples) and the Rupelian samples
312	were supplementary (i.e. they were passively plotted in the Bartonian DCA, only on
313	the basis of their resemblance in dinoflagellate cyst composition to the Bartonian
314	samples).
315	
316	To further understand the changes in the global distribution of dinoflagellate cyst taxa
317	that are common to both time slabs, simplified latitudinal range plots (using 5° bins;
318	see Supplementary Data: Latitudinal Ranges) were generated for all species in dataset
319	(3), and global occurrence maps plotted for selected species. These distributions,
320	plotted using corrected palaeolatitudes on modern geographical base maps, are shown
321	in Figure 8. Taxa were selected on the basis of having been consistently designated as
322	'temperature sensitive' in previous studies (Table 1). Opinion is divided about the

323 temperature sensitivity of some dinoflagellate cysts (Table 1), and the present study is 324 open-minded about the significance of the plots we illustrate for understanding SST. 325 5. Results 326 327 328 DCA of the global Bartonian and Rupelian datasets shows that southern hemisphere 329 communities are clearly different from northern hemisphere communities in both time 330 slabs (Fig. 5; see 7). Because latitudinal coverage of sample sites is poor in the 331 southern hemisphere, we decided to restrict further ordination analyses to the northern 332 hemisphere sites. 333 334 After omitting the 14 southern hemisphere samples and two outlier samples (B57 and 335 B58), we performed DCA on the remaining northern hemisphere Bartonian data (365 species, 55 samples). Along the first axis, sites are separated on the basis of their 336 337 palaeolatitudinal position, with low latitude samples (from three separate basins: Atlantic, Indian and Pacific oceans) on the right side of the first axis, high latitude 338 339 samples on the left side, and samples from intermediate latitudes $(50 - 30^{\circ} \text{ N})$ 340 occupying a somewhat intermediate position (Fig. 6B). The latitudinal gradient in cyst composition appears to be mainly driven by the low latitude samples, with high 341 342 latitude samples $(80 - 60^{\circ} \text{ N})$ having a species composition that is more-or-less 343 similar to samples from the many mid-latitude sites. As well as a latitudinal signal, we 344 can also distinguish a clear 'basin-effect', with sites in the North Sea and the palaeo-345 Tethys Ocean being more or less separated along the second axis (Fig. 6A). In contrast with the Bartonian dataset, DCA of the northern hemisphere Rupelian data 346 347 (449 species and 106 sites, after omitting 15 southern hemisphere samples and the

348	outliers R41 and R77) revealed no distinct latitudinal trend in species composition.
349	The Pacific sites are separated from most other samples which form a tight cluster on
350	the right side of the first ordination axis (Figs. 6C, D). The single (Indian Ocean)
351	sample from the $10 - 0^{\circ}$ N latitude class does not appear to be very different from the
352	other samples, nor do the samples from the $30 - 20^{\circ}$ N class (Fig. 6D). Basin
353	specificity is also less pronounced (except for the Pacific samples), although Atlantic
354	and North Sea samples do seem to be separated along the second axis (Fig. 6C). It is
355	likely that a general lack of tropical samples (only one sample after omission of
356	outliers R77 (Nigeria) and R41 (Indian Ocean)) is at least partly responsible for the
357	absence of a latitudinal trend in the Rupelian dataset, with most samples being located
358	between $45 - 65$ °N.
359	
360	To get a clearer insight into any underlying latitudinal control on the Bartonian and

Rupelian data, basin-specific effects were initially reduced by confining analyses to 361 362 samples from the palaeo-North Sea, Atlantic and Arctic oceans; basins for which palaeogeographical data suggest few barriers to North – South migration during the 363 364 Eocene - Oligocene transition. However, these results appear to show the persistent 365 influence of basin-setting and inshore to offshore environmental gradients (Suppl. Fig. 1), predominantly caused by the inclusion of samples from the palaeo-North Sea 366 region which are predominantly 'inshore'. Therefore, in a final analysis of the 367 368 combined Bartonian and Rupelian dataset (dataset (3)), residual basin-effects and palaeoenvironmental influences were minimised by removing the North Sea samples 369 370 (Fig. 7). As the latitudinal signal was strongest in the Bartonian dataset (cf. Fig. 6A), 371 we used the 15 remaining (Atlantic and Arctic) Bartonian samples as active samples, thus providing a (latitudinal) scaffold onto which the Rupelian samples are plotted as 372

373	supplementary ('passive') samples. The underlying idea is that if, as hypothesized,
374	dinoflagellate communities shift southward in a cooler climate, Rupelian communities
375	from a specific latitudinal belt would become more similar to Bartonian communities
376	from a higher latitudinal belt, since in a warmer period the same communities would
377	be found at higher latitudes. Surprisingly, there is no evidence supporting this
378	hypothesis at the community level. On the contrary, Fig. 7 clearly shows that
379	Rupelian high latitude communities (60 – 80 °N) appear to become more similar to
380	mid-latitude $(30 - 60 \text{ °N})$ Bartonian samples. While as a result of the stringent data
381	reduction, the number of samples included in the analysis is rather low, and some
382	latitudinal belts $(20 - 30, 40 - 50, 50 - 60 \degree N)$ are poorly or not represented in the
383	Bartonian latitudinal scaffold, the signal from the Rupelian high northern latitudinal
384	samples is clear: we find little evidence for a southward shift of dinoflagellate
385	communities from the Bartonian to the Rupelian.
386	
387	Examination of latitudinal range plots of taxa that are common to both time slabs (see
388	Supplementary Data: Latitudinal Ranges), as well as the distributions of some
389	'temperature sensitive' taxa, also suggest lack of a clear cooling signal in Rupelian
390	dinoflagellate cyst data. Latitudinal range plots for all taxa occurring in both the
391	Bartonian and Rupelian reveals three predomimant patterns (Appendix 1B): 1) taxa
392	showing negligible change in their most northerly limit in the northern hemisphere; 2)
393	taxa with a lower northern latitudinal limit in the northern hemisphere in the Rupelian
394	compared to the Bartonian; 3) taxa extending their northern latitudinal limit in the
395	northern hemisphere in the Rupelian compared to the Bartonian. Numbers of species
396	in categories (1) and (3) significantly exceed those in category (2), and category (3) is
397	the largest (Appendix 1B). Amongst the taxa previously interpreted as temperature-

398	sensitive, some warm/cold-water forms exhibit trends consistent with Rupelian
399	cooling, such as the southward movements of 'warm-water' Deflandrea arcuata (Fig.
400	8C) and 'cold-water' Rottnestia borussica (Fig 8F) and Svalbardella cooksoniae (Fig.
401	8B). Other taxa suggest the opposite trend, with persistence or northward extension of
402	the Rupelian ranges of 'warm-water' forms (e.g. Tectatodinium pellitum,
403	Lingulodinium machaerophorum; Fig. 8A, D). Polysphaeridium zoharyi, regarded as
404	a tropical to subtropical indicator species in modern oceans (Marret and Zonneveld,
405	2003; Zonneveld et al., 2013), extends from equatorial and subtropical latitudes in the
406	Bartonian to high mid-latitudes in the Rupelian (Fig. 8E). The plot for the Rupelian
407	occurrence of all selected warm-water indicator species shows a local concentration
408	immediately south of Australia (Fig. 9B), and published data for this region suggests a
409	persistent warm-water influence from the Late Eocene to Quaternary (Brinkhuis et al.,
410	2004). Overall, between the Bartonian and Rupelian there appears to be negligible
411	change in the global distributions of all cold-water/high-latitude and warm-water/low-
412	latitude taxa (Fig. 9). An important caveat concerning these trends is that they are also
413	affected by lack of data rather than purely reflecting a palaeoecological response.
414	However, the consistency of these trends across significant numbers of taxa suggests
415	that data-paucity alone is insufficient to explain them.
416	
417	6. Interpretation
418	
419	The starting hypothesis for this paper was that, based on previous use of dinoflagellate
420	cysts in palaeoclimate work (Brinkhuis and Biffi, 1993; Brinkhuis et al., 1998; Esper
421	and Zonneveld, 2007; Masure and Vrielynck, 2009; Mudie et al., 2001; Sluijs et al.,

422 2005; Wall et al., 1977), and on current understanding of extant dinoflagellate

423	distributions (Marret and Zonneveld, 2003; Zonneveld et al., 2013): 1) dinoflagellate
424	cyst assemblages as a whole would robustly track global climate change at the Eocene
425	- Oligocene transition; 2) there would be a well established palaeolatitudial gradient
426	of dinoflagellate cyst taxa in both the Bartonian and Rupelian; 3) that the effect of
427	global cooling in the latest Eocene and early Oligocene would be manifest as a
428	steepening of this palaeolatidudinal gradient, and that this would be accompanied by
429	significant equator-ward movement of taxa that are present in both time slabs. Our
430	analysis of dinoflagellate cyst data actually reveals more complex patterns that may
431	reflect a more complex oceanography, or suggests that across the Eocene - Oligocene
432	transition the predominant control on dinoflagellate cyst distributions may not be
433	SST. There is a relatively well-defined palaeolatitudinal gradient in northern
434	hemisphere data for the Bartonian. Low latitude sites have a distinct dinoflagellate
435	cyst composition whilst high and mid-latitude cyst taxa are more similar, suggesting a
436	weak thermal gradient. In contrast, there is no clear latitudinal gradient in northern
437	hemisphere Rupelian data. Partly this reflects lack of low-latitude data points (a single
438	site, R77), but it is also consistent with latitudinal range data that suggest both
439	northward and southward movement of a significant number of taxa in the northern
440	hemisphere in the Rupelian (Appendix 1B).
441	
442	7. Discussion
443	
444	Zonneveld et al. (2013) determined that latitudinal gradient was the most important
445	influence on their dataset of modern dinoflagellates, and that SST, phosphate and
446	nitrate concentrations are the most significant environmental variables that can be

447 related to modern distribution patterns. In this context, it is striking that both

448	community-level analysis of the northern hemisphere dinoflagellate cyst assemblages
449	(i.e. DCA results) and latitudinal range plots identify apparently paradoxical
450	palaeolatitudinal range shifts of taxa between the Bartonian and Rupelian. These
451	unexpected results may, in part, be explained by the uneven global coverage of our
452	dataset as well as methodological limitations; they may also reflect complex changes
453	in oceanography (for example patterns of warm and cool currents) that confuses the
454	global relationship of dinoflagellate cysts to palaeolatitude, or show that ecological
455	tolerance/adaptability of dinoflagellate cysts caused SST to be subordinate to other
456	factors in controlling their net latitudinal distribution in the Rupelian.
457	
458	7.1. Data coverage, methodological assumptions and limitations
459	Our methodology assumes that the time intervals (slabs) we have analysed are broadly
460	representative of two different global climatic states, one warm (Bartonian) and one
461	cool (Rupelian). For each time interval we assume that the contained taxa have
462	consistent ecology, have not been significantly affected by re-working (4 above), and
463	that orbitally driven patterns of climate change within each have had less impact on
464	the global distributions of taxa than the climate change events that occur between the
465	time intervals (MacLeod et al., 2000; Less and Özcan, 2012). Finally, because of
466	historical and on-going revisions to the definition of the selected time intervals, it is
467	possible that there is some error in how stratigraphical successions have been assigned
468	to time intervals, although this is partly addressed by assigning confidence levels to
469	stratigraphical assignments in our datsets. The degree to which the above assumptions
470	are not fully met will affect the fidelity of our results and interpretations, and may
471	explain in part why we have difficulty in discerning a clear latitudinal signal from the
472	Rupelian data.

474	In mitigation, our methodology outlines procedures and describes published evidence
475	that seeks to reduce or acceptably quantify the adverse potential impact of our
476	inherent assumptions. Also, the large size of both datasets helps to reduce the
477	statistical effect of individual sites that strongly depart from our ideal criteria; data
478	classes for age precision, depositional basin and environment allow statistical filtering
479	of potentially problematic data. Any residual bias in our data might be expected to
480	equally affect both Bartonian and Rupelian datasets, but whilst data for the Bartonian
481	yield a good latitudinal signal, a reliable signal for the Rupelian (the larger of the two
482	datasets) is not detectable.
483	
484	7.2. Oceanography
485	Pole-ward range shifts of Rupelian dinoflagellate cysts in the northern hemisphere
486	may suggest that aspects of environmental change related to Eocene - Oligocene
487	cooling modulated the response of dinoflagellate cysts to this event, compared to the
488	much more direct impact reported for planktonic foraminifera and calcareous
489	nannofossils (Wade and Pearson, 2008; Wei, 1991). Alternatively, the complex
490	response patterns of Rupelian dinoflagellates might reflect their sensitivity to local
491	patterns of marine circulation with different temperature profiles. In both central Italy
492	and the Southern Ocean, the sensitivity of dinoflagellate cysts to warm ocean currents
493	has been detected (Brinkhuis and Biffi, 1993; Brinkhuis et al., 2004). This has
494	produced low-latitude dinoflagellate cyst associations in Eocene – Quaternary
495	successions off the coast of Tasmania (palaeolatitude 59°S) (Brinkhuis et al., 2004),
496	and in Italy, warm and cool phase dinoflagellate cyst associations in Eocene –
497	Oligocene strata (Brinkhuis and Biffi, 1993) may reflect the intermittent influence of

498 the Subtropical Neotethys Current (STENT) (Jovane et al., 2009). Warm ocean

499 currents may also be the cause of inexplicably high SSTs at mid to high latitudes in

- 500 the late Eocene and early Oligocene of the northern hemisphere (Liu et al., 2009), and
- 501 explain some of the unexpected results of our study.

- 503 7.3. Nutrient regime
- 504 Although the distribution of modern organic walled dinoflagellate cysts is
- 505 predominantly related to SST and latitude, the next biggest controls are salinity and
- 506 nutrients (Zonneveld et al., 2013), which to a greater or lesser degree reflect the
- 507 offshore to onshore gradient (Marret and Zonneveld, 2003). It is therefore likely that
- 508 related environmental changes to global cooling at the Eocene Oligocene boundary
- 509 could have an impact on the results of our study.
- 510
- 511 A modelled c. 70 m fall in sea level is associated with early Oligocene cooling and the
- 512 onset of Antarctic glaciation (Coxall et al., 2005), and both palaeontological and
- 513 sedimentological data (Alegret et al., 2008; Brinkhuis and Biffi, 1993; Śliwińska et
- al., 2010) show that this time coincides with enhanced riverine input of eroded
- 515 sediments into marine basins. The effects of enhanced nutrient delivery to the marine
- 516 realm would be amplified across flooded continental shelves and enclosed basins;
- 517 palaeogeographical settings that are strongly represented in our northern hemisphere
- 518 data for the Rupelian. In the North Sea, this fall in sea level produced prograding
- 519 muddy and sandy sediments derived from Fennoscandia, overlying Eocene
- 520 hemipelagic clays (Śliwińska et al., 2010). Elsewhere, contemporary tectonism
- 521 combined with eustatic sea level fall radically altered the nature and volumes of
- 522 sediment entering marine basins, for example in the Mediterranean (Brinkhuis and

Biffi, 1993) and off the coast of southern Spain, where foraminifera provide evidence
for increases in nutrient fluxes to deep marine early Rupelian settings (Alegret et al.,
2008). This, and the lack of DCA evidence for equator-ward movement of Rupelian
dinoflagellate cysts from predominantly open-ocean sites, suggests that any changes
in the nutrient regime of the marine realm in the Rupelian may not have been limited
to shelfal regions.

529

530 The importance of nutrients in driving the evolution of the dinoflagellates is 531 exemplified by the distinct character of southern hemisphere Eocene – Oligocene 532 dinoflagellate cysts. These high southern latitude dinoflagellates developed their 533 endemic character ('Transantarctic Flora') in the early mid Eocene (Bijl et al., 2011), 534 initially in response to increases in ocean fertility, but probably later became 535 modulated by reductions in SST (Bijl et al., 2011). Mathematical 'decision-making' models also reveal the influence of light and nutrients on the diurnal movements of 536 537 modern dinoflagellates, suggesting that changes in the relative balances of these two 538 variables can trigger different responses (Yamazaki and Kamykowski, 2000). This 539 raises the possibility that at least part of the distribution of dinoflagellate taxa in the 540 Rupelian is the result of an ecological trade-off between several simultaneously 541 varying factors that are important for dinoflagellate well-being. 542 543 7.4. Ecological tolerance and adaptability 544 Data from our study, particularly the large percentage of shared taxa between the 545 Bartonian and Rupelian and the apparent pole-ward Rupelian migration of many 546 dinoflagellate cyst species in the northern hemisphere, suggests that dinoflagellate

547 cyst taxa are relatively robust to environmental change. This may partly reflect the

548	astonishing cryptic diversity recently discovered in extant dinoflagellates (Stern et al.,
549	2010; Murray et al., 2012). Broad temperature tolerance is also suggested by
550	comparison of Pliocene dinoflagellate cysts with analytically determined temperature
551	measurements (De Schepper et al., 2011); the SST range of many dinoflagellate cyst
552	taxa is large compared to the average cooling of 5.4°C (polar regions; Liu et al., 2009)
553	to 2.5°C (tropical regions; Lear et al., 2008) at the Eocene – Oligocene transition.
554	Unlocking the SST signal from dinoflagellate cyst data may ultimately depend on
555	analysis of their abundance (De Schepper et al., 2011), although challenges exist to
556	applying this methodology at a global scale across numerous sites. In a quantitative
557	analaysis of dinoflagellate cysts to track Eocene – Oligocene climate change in central
558	Italy, Houben et al. (2012) were careful to select particular 'warm' or 'cool' oceanic
559	taxa, aware that inclusion of all taxa could create unwanted 'noise'.
560	
561	Investigation of high-latitude northern hemisphere climate at the Eocene – Oligocene
561 562	Investigation of high-latitude northern hemisphere climate at the Eocene – Oligocene transition suggests a complex response to cooling, with limited ice growth (Peck et
561 562 563	Investigation of high-latitude northern hemisphere climate at the Eocene – Oligocene transition suggests a complex response to cooling, with limited ice growth (Peck et al., 2010) and extreme seasonality; modelled climate simulations suggest very cold
561 562 563 564	Investigation of high-latitude northern hemisphere climate at the Eocene – Oligocene transition suggests a complex response to cooling, with limited ice growth (Peck et al., 2010) and extreme seasonality; modelled climate simulations suggest very cold winters contrasting with warm summers with high precipitation (Eldrett et al., 2009).
 561 562 563 564 565 	Investigation of high-latitude northern hemisphere climate at the Eocene – Oligocene transition suggests a complex response to cooling, with limited ice growth (Peck et al., 2010) and extreme seasonality; modelled climate simulations suggest very cold winters contrasting with warm summers with high precipitation (Eldrett et al., 2009). This climate response in the northern hemisphere could help explain why our
 561 562 563 564 565 566 	Investigation of high-latitude northern hemisphere climate at the Eocene – Oligocene transition suggests a complex response to cooling, with limited ice growth (Peck et al., 2010) and extreme seasonality; modelled climate simulations suggest very cold winters contrasting with warm summers with high precipitation (Eldrett et al., 2009). This climate response in the northern hemisphere could help explain why our Rupelian data (overwhelmingly concentrated in the northern hemisphere) do not show
561 562 563 564 565 566 567	Investigation of high-latitude northern hemisphere climate at the Eocene – Oligocene transition suggests a complex response to cooling, with limited ice growth (Peck et al., 2010) and extreme seasonality; modelled climate simulations suggest very cold winters contrasting with warm summers with high precipitation (Eldrett et al., 2009). This climate response in the northern hemisphere could help explain why our Rupelian data (overwhelmingly concentrated in the northern hemisphere) do not show a dominant latitudinal effect. Cyst formation could also have mitigated the effects of
561 562 563 564 565 566 567 568	Investigation of high-latitude northern hemisphere climate at the Eocene – Oligocene transition suggests a complex response to cooling, with limited ice growth (Peck et al., 2010) and extreme seasonality; modelled climate simulations suggest very cold winters contrasting with warm summers with high precipitation (Eldrett et al., 2009). This climate response in the northern hemisphere could help explain why our Rupelian data (overwhelmingly concentrated in the northern hemisphere) do not show a dominant latitudinal effect. Cyst formation could also have mitigated the effects of seasonally adverse conditions (Dale, 1983; Matsuoka and Fukyo, 2000; Sarjeant et al.,
 561 562 563 564 565 566 567 568 569 	Investigation of high-latitude northern hemisphere climate at the Eocene – Oligocene transition suggests a complex response to cooling, with limited ice growth (Peck et al., 2010) and extreme seasonality; modelled climate simulations suggest very cold winters contrasting with warm summers with high precipitation (Eldrett et al., 2009). This climate response in the northern hemisphere could help explain why our Rupelian data (overwhelmingly concentrated in the northern hemisphere) do not show a dominant latitudinal effect. Cyst formation could also have mitigated the effects of seasonally adverse conditions (Dale, 1983; Matsuoka and Fukyo, 2000; Sarjeant et al., 1987), and may partly explain why diversity plots of dinoflagellate cysts show only a
561 562 563 564 565 566 567 568 569 570	Investigation of high-latitude northern hemisphere climate at the Eocene – Oligocene transition suggests a complex response to cooling, with limited ice growth (Peck et al., 2010) and extreme seasonality; modelled climate simulations suggest very cold winters contrasting with warm summers with high precipitation (Eldrett et al., 2009). This climate response in the northern hemisphere could help explain why our Rupelian data (overwhelmingly concentrated in the northern hemisphere) do not show a dominant latitudinal effect. Cyst formation could also have mitigated the effects of seasonally adverse conditions (Dale, 1983; Matsuoka and Fukyo, 2000; Sarjeant et al., 1987), and may partly explain why diversity plots of dinoflagellate cysts show only a small drop between the Ypresian/Bartonian and Rupelian (MacRae et al., 1996).
 561 562 563 564 565 566 567 568 569 570 571 	Investigation of high-latitude northern hemisphere climate at the Eocene – Oligocene transition suggests a complex response to cooling, with limited ice growth (Peck et al., 2010) and extreme seasonality; modelled climate simulations suggest very cold winters contrasting with warm summers with high precipitation (Eldrett et al., 2009). This climate response in the northern hemisphere could help explain why our Rupelian data (overwhelmingly concentrated in the northern hemisphere) do not show a dominant latitudinal effect. Cyst formation could also have mitigated the effects of seasonally adverse conditions (Dale, 1983; Matsuoka and Fukyo, 2000; Sarjeant et al., 1987), and may partly explain why diversity plots of dinoflagellate cysts show only a small drop between the Ypresian/Bartonian and Rupelian (MacRae et al., 1996).

5/3	
574	8. Conclusions
575	This study has sought to investigate Eocene – Oligocene climate change using
576	published data on the occurrence of dinoflagellate cysts; to understand the pattern of
577	change in distribution between the Bartonian and Rupelian; the extent to which this

- 578 distribution is likely to faithfully track changes in SST, and the implications this has
- 579 for understanding the consequences of early Oligocene global cooling; the extent to
- 580 which these distributions are likely to be unrelated to changes in SST, and the
- 581 consequences for use of dinoflagellate cyst data in palaeoclimate work.
- 582 Our results suggest the following:
- 583
- 584 1) Global distributions of dinoflagellate cysts in the Bartonian show a good latitudinal
- 585 relationship and suggest a weak thermal gradient, in agreement with global SST
- 586 estimates for this time interval (Bijl et al., 2009). This suggests that our methodology
- 587 is reliable, and our assumptions and data coverage acceptable.
- 588
- 589 2) Rupelian dinoflagellate cyst distributions do not show a clear relationship to
- 590 latitude. Statistical analyses and range data suggest that mid- to high-latitude
- 591 dinoflagellate cyst associations in the cooler Rupelian are more like lower latitude
- 592 associations in the globally warmer Bartonian.
- 593
- 594 3) It is possible that at least part of the Rupelian dinoflagellate cyst distribution
- 595 reflects latitudinally discordant influences on SST, such as warm ocean currents
- 596 (Brinkhuis et al., 2004), or perhaps unusual northern hemisphere seasonality that
- 597 maintained relatively high summer temperatures at high latitudes (Eldrett et al., 2009).

599	4) To some extent, the distributions of dinoflagellate cysts in the Rupelian may be
600	significantly influenced by factors other than SST, potentially complicating how their
601	distributions are interpreted with respect to climate change events. The factors
602	affecting dinoflagellate cyst distribution in the Rupelian may be connected to related
603	environmental changes associated with Rupelian cooling, such as sea level fall
604	associated with the onset of Antarctic glaciation. Studies of Pliocene and extant
605	dinoflagellates also suggest that many have broad temperature ranges (De Schepper et
606	al., 2011) and high genetic diversity (Stern et al., 2010; Murray et al., 2012); whilst
607	dinoflagellate cysts appear to have optimised distributions to SST in the Bartonian,
608	their biology may have allowed greater flexibility of response to Rupelian climate
609	change. Our work highlights the need for better understanding of the biology and
610	(palaeo-) ecology of dinoflagellates, and how this affects their response to changes in
611	key environmental parameters and governs their distribution in present and past
612	oceans.
613	
614	ACKNOWLEDGEMENTS
615	
616	This research was supported by the BGS Climate Change Research Programme
617	directed by Dr Michael A. Ellis. We are grateful to Emily Peckover (University of
618	Leicester) for assisting with data compilation, and to Stewart G. Molyneux and Ian P.
619	Wilkinson (British Geological Survey) for early reviews of this manuscript. MAW
620	and JBR publish with the permission of the Executive Director, British Geological
621	Survey (NERC). TRAV acknowledges financial support from the French "Agence
622	Nationale de la Recherche" through grant ANR-12-BS06-0014 "SeqStrat-Ice".

6	2	2
υ	7	Э

624	REFERENCES
-----	------------

626	Alegret, L.,	Cruz. L.	E., Fenero.	R.	. Molina.	E.,	Ortiz.	S.,	Thomas.	Ε.	2008.	Effects of
040	1 110 gr ev, 10.,	CIGE, E.	D ., I U .	, <u>.</u>	, 1110111100,	,	OICL,	~.,	I IIOIIIAD.	, _	,	

- 627 the Oligocene climatic events on the foraminiferal record from Fuente Caldera
- 628 section (Spain, western Tethys). Palaeogeography, Palaeoclimatology,
- 629 Palaeoecology 269: 94 102.
- 630
- Anderson, J. B., Warny, S., Askin, R. A., Wellner, J. S., Bohaty, S. M., Kirshner, A.
- 632 E., Livsey, D. N., Simms, A. R., Smith, T. R., Ehrmann, W., Lawver, L. A.,
- Barbeau, D., Wise, S. W., Kulhenek, D. K., Weaver, F. M., Majewski, W., 2011.
- 634 Progressive Cenozoic cooling and the demise of Antarctica's last refugium.
- 635 PNAS 108: 11356 11360.
- 636
- 637 Bijl, P. K., Pross, J., Warnaar, J., Stickley, C. E., Huber, M., Guerstein, R., Houben,
- A. J. P., Sluijs, A., Visscher, H., Brinkhuis, H., 2011. Environmental forcings of
- 639 Paleogene Southern Ocean dinoflagellate biogeography. Paleoceanography 26:640 PA1202.
- 641
- 642 Bijl, P. K., Schouten, S., Sluijs, A., Reichart, G.-J., Zachos, J. C., Brinkhuis, H., 2009.
- Early Palaeogene temperature evolution of the southwest Pacific Ocean. Nature
- 644 461: 776 779.
- 645
- 646 Bohaty, S. M., Zachos, J. C., 2003. Significant Southern Ocean warming event in the
- 647 late middle Eocene. Geology 31: 1017 1020.

648	
649	Bohaty, S. M., Zachos, J. C., Florindo, F., and Delaney, M. L., 2009. Coupled
650	greenhouse warming and deep-sea acidification in the middle Eocene.
651	Paleoceanography 24: PA2207.
652	
653	Bown, P. R., Lees, J. A., Young, R., 2004. Calcareous nannoplankton evolution and
654	diversity through time. In: Thierstein, H. R., Young, J. R. (Editors),
655	Coccolithophores: from molecular processes to global impact. Springer-Verlag,
656	Berlin, pp. 481 – 508.
657	
658	Brinkhuis, H., 1994. Late Eocene to Early Oligocene dinoflagellate cysts from the
659	Priabonian type-area (Northeast Italy): biostratigraphy and paleoenvironmental
660	interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology 107: 121-
661	163.
662	
663	Brinkhuis, H., Biffi, U., 1993. Dinoflagellate cyst stratigraphy of the Eocene/
664	Oligocene transition in central Italy. Marine Micropalaeontology 22: 131 – 183.
665	
666	Brinkhuis, H., Bujak, J. P., Smit, J., Versteegh, G. J. M., Visscher, H., 1998.
667	Dinoflagellate-based sea surface temperature reconstructions across the
668	Cretaceous - Tertiary boundary. Palaeogeography, Palaeoclimatology,
669	Palaeoecology 141: 67 – 83.
670	
671	Brinkhuis, H, Munsterman, D. K., Sengers, S., Sluijs, A., Warnaar, J, Williams, G. L.,
672	2004. Late Eocene- Quaternary dinoflagellate cysts from ODP Site 1168, off

673	western Tasmania. In: Exon, N.F., Kennett, J.P., Malone, M.J. (Eds.),
674	Proceedings of the Ocean Drilling Program, Scientific Results 189: 1 – 36 [CD-
675	ROM].
676	
677	Burgess, C. E., Pearson, P. N., Lear, C. H., Morgans, H. E. G., Handley, L., Pancost,
678	R. D., Schouten, S., 2008. Middle Eocene climate cyclicity in the southern
679	Pacific: Implications for global ice volume. Geology 36: 651 – 654.
680	
681	Costa, L. I., Manum, S. B., 1988. The description of the interregional zonation of the
682	Paleogene (D1-D15) and the Miocene (D16-D20). In: Vinken, R. (Editor), The
683	Northwest European Tertiary Basin. Results of the International Geological
684	Correlation Programme. Project No. 124. Geologisches Jahrbuch 100: 321 – 330.
685	
686	Coxall, H., Wilson, P. A, Pälike, H., Lear, C. H., Backman, J., 2005. Rapid stepwise
687	onset of Antarctic glaciation and deeper calcite compensation in the Pacific
688	Ocean. Nature 433: 53 – 57.
689	
690	Dale, B., 1983. 4. Dinoflagellate resting cysts: "benthic plankton". In: Fryxell, G. A.
691	(Editors), Survival strategies of the algae. Cambridge University Press,
692	Cambridge and New York, pp. 69 – 136.
693	
694	Dale, B., 1996. Chapter 31. Dinoflagellate cyst ecology: modelling and geological
695	applications. In: Jansonius, J., McGregor, D. C. (Editors), Palynology: principles
696	and applications, American Association of Stratigraphic Palynologists
697	Foundation 3, pp. 1249 – 1275.

698	
699	De Coninck, J. 1986. Organic walled phytoplankton from the Bartonian and Eo-
700	Oligocene transitional deposits of the Woensdrecht Borehole, southern
701	Netherlands. Mededelingen rijks geologische dienst 40-2: $1 - 49$.
702	
703	De Schepper, S., Head, M. J., Groeneveld, J., 2009. North Atlantic Current variability
704	through marine isotope stage M2 (circa 3.3 Ma) during the mid-Pliocene.
705	Paleoceanography 24: PA4206.
706	
707	De Schepper, S, Fischer, E. I., Groeneveld, J., Head, M. J., Matthiessen, J., 2011.
708	Deciphering the palaeoecology of Late Pliocene and Early Pleistocene
709	dinoflagellate cysts. Palaeogeography, Palaeoclimatology, Palaeoecology 309: 17
710	- 32.
711	
712	DeConto, R. M., Pollard, D., 2003. Rapid Cenozoic glaciation of Antarctica induced
713	by declining atmospheric CO_2 . Nature 421: 245 – 249.
714	
715	Eldrett, J. S., Greenwood, D. R., Harding, I. C., Huber, M., 2009. Increased
716	seasonality through the Eocene to Oligocene transition in northern high latitudes.
717	Nature 459: 969 – 973.
718	
719	Esper, O., Zonneveld, K. A. F., 2007. The potential of organic-walled dinoflagellate
720	cysts for the reconstruction of past sea-surface conditions in the Southern Ocean.
721	Marine Micropaleontology 65: 185 – 212.
722	

723	Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., 1993.
724	A classification of living and fossil dinoflagellates. Micropaleontology Special
725	papers, No. 7, 351 pp.
726	
727	Fensome, R.A., Williams, G.L., 2004. The Lentin and Williams index of fossil
728	dinoflagellates 2004 edition. American Association of Stratigraphic Palynologists
729	Contributions Series 42: 1 – 909.
730	
731	Frith, J V. 1996. 12 Upper Middle Eocene to Oligocene dinoflagellate biostratigraphy
732	and assemblage variations in Hole 913B, Greenland Sea. Proceedings of the
733	Ocean Drilling Program, Scientific Results 151: 203 – 242.
734	
735	Gradstein, F. M., Ogg, J. G., Schmitz, M. D., Ogg, G. M. 2012. The Geologic Time
736	Scale 2012. Elsevier, Oxford, UK.
737	
738	Guerstein, G. R., Guler, M. V., Williams, G. L., Fensome, R. A., Chiesa, J. O., 2008.
739	Middle Palaeogene dinoflagellate cysts from Tierra del Fuego, Argentina:
740	biostratigraphy and palaeoenvironments. Journal of Micropalaeontology 27: 75 -
741	94.
742	
743	Head, M. J., 1994. Morphology and paleoenvironmental significance of the Cenozoic
744	dinoflagellate genera Tectatodinium and Habibacysta. Micropalaeontology 40:
745	289 – 321.
746	

747	Head, M. J., Norris, G., 1989. Palynology and dinocyst stratigraphy of the Eocene and
748	Oligocene in ODP Leg 105, Hole 647A, Labrador Sea. Proceedings of the Ocean
749	Drilling Program, Scientific Results 105: 515 – 537.
750	
751	Heilman-Clausen, C., Van Simaeys, S. 2005. Dinoflagellate cysts from the Middle
752	Eocene to ?lowermost Oligocene succession in the Kysing Research Borehole,
753	Central Danish Basin. Palynology 29: 143 – 204.
754	
755	Houben, A. J. P., van Mourik, C. A., Montanari, A., Coccioni, R., Brinkhuis, H.,
756	2012. The Eocene – Oligocene transition: Changes in sea level, temperature or
757	both ? Palaeogeography, Palaeoclimatology, Palaeoecology 335 – 336: 75 – 83.
758	
759	Jaramillo, C.A., Oboh-Ikuenobe, F. E., 1999. Sequence stratigraphic interpretations
760	from palynofacies, dinocyst and lithological data of Upper Eocene-Lower
761	Oligocene strata in southern Mississippi and Alabama, US Gulf Coast.
762	Palaeogeography, Palaeoclimatology, Palaeoecology 145: 259 – 302.
763	
764	Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S., Kim, T. H., 2010.
765	Ocean Science Journal 45: 65 – 91.
766	
767	Jongman, R. H. G., ter Braak, C. J. F., Van Tongeren, O. F. R. 1995. Data analysis in
768	community and landscape ecology. Cambridge University Press, Cambridge;
769	New York, 324 pp.

771	Jovane, L., Coccioni, R., Marsili, A., Acton, G., 2009. The late Eocene greenhouse -
772	icehouse transition: Observations from the Massignano global stratotype section
773	and point (GSSP). In: Koeberl, C., Montanari, A. (Eds), The Late Eocene Earth -
774	Hothouse, Icehouse, and Impacts. Geological Society of America Special Paper
775	452: 149 – 168.
776	
777	Köthe, A., 1990. Paleogene Dionoflagellates from Northwest Germany –
778	Biostratigraphy and Paleoenvironment. Geologisches Jahrbuch 118: 3 – 111.
779	
780	Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall. H. K., Rosenthal, Y., 2008. Cooling
781	and ice growth across the Eocene – Oligocene transition. Geology $36: 251 - 254$.
782	
783	Less, G., Özcan, E., 2012. Bartonian – Priabonian larger benthic foraminiferal events
784	in the Western Tethys. Austrian Journal of Earth Sciences 105: 129 – 140.
785	
786	Liu, Z., Pagani, M, Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., Shah, S. R.,
787	Leckie, R. M., and Pearson, A., 2009. Global Cooling During the Eocene –
788	Oligocene Climate Transition. Science 323: 1187 – 1190.
789	
790	MacLeod, N., Ortiz, N., Fefferman, N., Clyde, W., Schulter, C., MacLean, J., 2000. 5
791	- Phenotypic response of foraminifera to episodes of global environmental
792	change. In: Culver, S. J., Rawson, P. F. (Editors), Biotic Response to Global
793	Change, Cambridge University Press, Cambridge, pp. 51 – 78
794	

795	MacRae, R.A., Fensome R.A., Williams, G.L., 1996. Fossil dinoflagellate diversity,
796	originations and extinctions and their significance. Canadian Journal of Botany
797	74: 1687 – 1694.
798	
799	Marret, F., Zonneveld, K. A. F., 2003. Atlas of modern organic-walled dinoflagellate
800	cyst distribution. Review of Palaeobotany and Palynology 125: 1 – 200.
801	
802	Masure, E., Vrielynck, B., 2009. Late Albian dinoflagellate cyst paleobiogeography
803	as indicator of asymmetric sea surface temperature gradient on both hemispheres
804	with southern high latitudes warmer than northern ones. Marine
805	Micropaleontology 70: 120 – 133.
806	
807	Matsuoka, K., Fukyo, Y., 2000. Technical Guide for Modern Dinoflagellate Cyst
808	Study. WESTPAC-HAB/WESTPAC/IOC.
809	
810	McMahon, J. M., 1997. Palynology and paleoecology of the Stone City Member,
811	Crockett Formation, Middle Eocene, Burleston Co, Texas. Unpublished
812	dissertation for degree of Master of Science. Texas A&M University, Texas,
813	USA, 164 pp.
814	
815	Mertens, K. N., Verhoeven, K., Verleye, T., Louwye, S., Amorim, A., Ribeiro, S.,
816	Deaf, A. S., Harding, I. C., De Schepper, S., González, C., Kodrans-Nsiah, M.,
817	De Vernal, A., Henry, M., Radi, T., Dybkjaer, K., Poulsen, N. E., Feist-
818	Burkhardt, S., Chitolie, J., Heilmann-Clausen, C., Londeix, L., Turon, JL.,
819	Marret, F., Matthiessen, J., McCarthy, F. M. G., Prasad, V., Pospelova, V.,

820	Kyffin Hughes, J. E., Riding, J. B., Rochon, A., Sangiorgi, F., Welters, N.,
821	Sinclair, N., Thun, C., Soliman, A., Van Nieuwenhove, N., Vink, A., Young, M.,
822	2009. Determining the absolute abundance of dinoflagellate cysts in recent
823	marine sediments: The Lycopodium marker-grain method put to the test. Review
824	of Palaeobotany and Palynology 157: 238 – 252.
825	
826	Mudie, P. J., Harland, R., Matthiessen, J., De Vernal, A., 2001. Marine dinoflagellate
827	cysts and high latitude Quaternary paleoenvironmental reconstructions: an
828	introduction. Journal of Quaternary Science 16: 595 – 602.
829	
830	Murray, S. A., Garby, T., Hoppenrath, M., Neilan, B. A., 2012. Genetic diversity,
831	Morphological Uniformity and Polyketide Production in Dinoflagellates
832	(Amphidinium, Dinoflagellata). PLoS ONE 7(6), e38253. doi:10.
833	1371/journal.pone.0038253.
834	
835	Pagani, M., Huber, M., Liu, Z., Bohaty, S.M., Henderiks, J., Sijp, W., Krishnan, S.,
836	DeConto, R.M., 2011. The Role of Carbon Dioxide During the Onset of Antarctic
837	Glaciation. Science 334: 1261 – 1264.
838	
839	Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K., Lear, C. H.,
840	Shackleton, N. J., Tripati, A. K., Wade, B., 2006. The Heartbeat of the Oligocene
841	Climate System. Science 314: 1894 – 1898.
842	
843	Pearson, P. N., Foster, G. L., Wade, B. S., 2009. Atmospheric carbon dioxide through
844	the Eocene – Oligocene climate transition. Nature 461: 1110 – 1113.

845	
846	Peck, V. L., Yu, J., Kender, S., Riesselman, C. R., 2010. Shifting ocean carbonate
847	chemistry during the Eocene – Oligocene climate transition: Implications for
848	deep-ocean MG/Ca paleothermometry. Paleooceanography 25: PA4219.
849	
850	Pound, M. J., Haywood, A. M., Salzmann, U., Riding, J. B., Lunt, D. J., Hunter, S. J.
851	2011. A Tortonian (late Miocene, 11.61 – 7.25 Ma) global vegetation
852	reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 300: 29 -
853	45.
854	
855	Pound, M. J., Haywood, A. M., Salzmann, U., Riding, J. B., 2012. Global
856	vegetational dynamics and latitudinal temperature gradients during the Mid to
857	late Miocene (15.97 – 5.33 Ma). Earth Science Reviews 112: 1 – 22.
858	
859	Salzmann, U., Haywood, A. M., Lunt, D. J., Valdes, P. J., Hill, D. J., 2008. A new
860	global biome reconstruction and data model comparison for the Middle Pliocene.
861	Global Ecology and Biogeography 17: 432 – 447.
862	
863	Sarjeant, W. A., Lacalli, T., Gaines, G., 1987. The cysts and skeletal elements of
864	dinoflagellates: speculations on the ecological causes for their morphology and
865	development. Micropalaeontology 33: 1-36.
866	
867	Schiøler, P., 2005. Dinoflagellate cysts and acritarchs from the Oligocene - Lower
868	Miocene interval of the Alma-1X well, Danish North Sea. Journal of
869	Micropalaeontology 24: 1 – 37.

870	
871	Shipboard Scientific Party., 2001. Chapter 7, Site 1172. Proceedings of the Ocean
872	Drilling Program, Initial Reports 189: 1 – 149 [CD-ROM].
873	
874	Śliwińska, K. K., Clausen, O. R., Heilmann-Clausen, C., 2010. A mid-Oligocene
875	cooling (Oi-2b) reflected in the dinoflagellate record and in depositional sequence
876	architecture. An integrated study from the eastern North Sea Basin. Marine and
877	Petroleum Geology 27: 1424 – 1430.
878	
879	Sloan, L. C., Huber, M., 2001. Eocene Oceanic Responses to Orbital Forcing on
880	Precessional Time Scales, Paleoceanography 16: 101 – 111.
881	
882	Sluijs, A., Pross, J., Brinkhuis, H., 2005. From greenhouse to icehouse; organic-
883	walled dinoflagellate cysts as palaeoenvironmental indicators in the Paleogene.
884	Earth Science Reviews 68: 281 – 315.
885	
886	Stern, R. F., Horak, A., Andrew, R. L., Coffroth, MA., Andersen, R. A., Küpper, F.
887	C., Jameson, I., Hoppenrath, M., Véron, B., Kasai, F., Brand, J., James, E. R.,
888	Keeling, P. J., 2010. Environmental Barcoding Reveals Massive Dinoflagellate
889	Diversity in Marine Environments. PLoS ONE 5(11), e13991, doi:
890	10.1371/journal.pone.0013991.
891	
892	ter Braak, C. J. F., Smilauer, P. 1998. Canoco reference manual and user's guide to
893	Canoco for Windows: software for canonical community ordination (version 4).
894	Microcomputer Power, Ithaca, NY, 352 pp.

8	9	5
υ	,	\sim

896	Vandenbroucke, T. R. A., Armstrong, H. A., Williams, M., Paris, F., Zalasiewicz, J.
897	A., Sabbe, K., Nõlvak, J., Challands, T. J., Verniers, J., Servais, T. 2010. Polar
898	front shift and atmospheric CO2 during the glacial maximum of the Early
899	Paleozoic Icehouse. PNAS 107: 14983 – 14986.
900	
901	Van Mourik, C. A., Brinkhuis, H., Williams, G. L., 2001. Mid- to Late Eocene
902	organic-walled dinoflagellate cysts from ODP Leg 171B, offhore Florida. Special
903	Publication of the Geological Society, London 183: 225 – 251.
904	
905	Van Simaeys, S. V., 2004. Stratigraphic and palaeoenvironmental analysis of the
906	Rupelian and Chattian in their type regions: implications for global Oligocene
907	chronostratigraphy. PhD Thesis, University of Leuven, 201 pp.
908	
909	Van Simaeys, S., Musterman, D. K., Brinkhuis, H. 2005. Oligocene dinoflagellate
910	cyst biostratigraphy of the southern North Sea Basin. Review of Palaeobotany
911	and Palynology 134: 105 – 128.
912	
913	Verleye, T. J., Louwye, S. 2010. Recent geographical distribution of organic-walled
914	dinoflagellate cysts in the southeast Pacific $(25 - 53^{\circ}S)$ and their relation to the
915	prevailing hydrographical conditions. Palaeogeography, Palaeoclimatology,
916	Palaeoecology 298: 319 – 340.
917	
918	Versteegh, G. J. M., Zonneveld, K. A. F., 1994. Determination of (palaeo-) ecological
919	preferences of dinoflagellates by applying detrended and canonical

- 920 correspondence analysis to late Pliocene dinoflagellate cyst assemblages of the
- 921 south Italian Singa section. Palynology 18: 264 265.
- 922
- 923 Wade, B. S., Kroon, D., 2002. Middle Eocene regional climate instability: Evidence
- from the western North Atlantic. Geology 30: 1011 1014.
- 925
- 926 Wade, B., Pälike, H., 2004. Oligocene climate dynamics. Paleoceanography 19:
- 927 PA4019.
- 928
- 929 Wade, B. S., Pearson, P. N., 2008. Planktonic foraminiferal turnover, diversity
- 930 fluctuations and geochemical signals across the Eocene/Oligocene boundary in
- 931 Tanzania. Marine Micropalaeontology 68: 244 255.
- 932
- 933 Wade, B. S., Houben, A. J., Quaijtaal, W., Schouten, S., Rosenthal, Y., Miller, K. G.,
- 934 Katz, M. E., Wright, J. D., Brinkhuis, H. 2012. Multiproxy record of abrupt sea-
- 935 surface cooling across the Eocene Oligocene transition in the Gulf of Mexico.
- 936 Geology 40: 159 162.
- 937
- 938 Wall, D., Dale, B., Lohmann, G. P., Smith, W. K., 1977. The environmental and
- 939 climatic distribution of dinoflagellate cysts in Modern marine sediments from
- 940 regions in the North and South Atlantic Oceans and adjacent seas. Marine
- 941 Micropalaeontology 2: 121 200.
- 942
- 943 Wei, W., 1991. Evidence for an earliest Oligocene abrupt cooling in the surface
- 944 waters of the Southern Ocean. Geology 19: 780 783.

a	Λ	5
)	-	\sim

946	Williams, G. L., Brinkhuis, H., Pearce, M. A., Fensome, R. A., Weegink, J. W., 2004.
947	Southern Ocean and global dinoflagellate cysts events compared: index events for
948	the Late Cretaceous – Neogene. In: Exon, N. F., Kennett, J. P., and Malone, M. J.
949	(Eds.), Proceedings of the Ocean Drilling Program, Scientific Results 189: 1-98
950	[CD-ROM].
951	
952	Yamazaki, A. K., Kamykowski, D., 2000. A dinoflagellate adaptive behavior model:
953	response to internal biochemical cues. Ecological Modelling 134: 59 – 72.
954	
955	Zonneveld, K. A., Marret, F., Versteegh, G. J. M., Bogus, K., Bonnet, S.,
956	Bouimetarhan, I., Crouch, E., de Vernal, A., Elshanawany, R., Edwards, L.,
957	Esper, O., Forke, S., Grøsfjeld, K., Henry, M., Holzwarth, U., Kielt, JF., Kim,
958	SY., Ladouceur, S., Ledu, D., Chen, L., Limoges, A., Londeix, L., Lu, SH.,
959	Mahmoud, M. S., Marino, G., Matsouka, K., Matthiessen, J., Mildenhal, D. C.,
960	Mudie, P., Neil., H. L., Pospelova, V., Qi, Y., Radi, T., Richerol, T., Rochon, A.,
961	Sangiorgi, F., Solignac, S., Turon, JL., Verleye, T., Wang, Y., Wang, Z.,
962	Young, M., 2013. Atlas of modern dinoflagellate cyst distribution based on 2405
963	datapoints. Review of Palaeobotany and Palynology 191: 1 – 197.
964	
965	

966 Appendix 1A. Summary of locality data.

- 967
- 968 Longitude and latitude co-ordinates are decimalised. Where precise positions are
- 969 uncertain, the co-ordinates are the origin of a specified geographical radius that the
- 970 locality falls within. For full details see Supplementary Data.
- 971

Mid Eocene (Bartonian)

Locality	General	Modern		Rotated		Locality	General	Modern		Rotated	
Code	Location	Lat.	Long.	Lat.	Long.	Code	Location	Lat	Long.	Lat.	Long.
B1	UK	50.72N	1.75W	48.55N	5.64W	B37	Southern	46.78S	144.96E	67.23S	149.59E
B2	Siberia, Russia	64.16N	73.15E	64.56N	65.54E	B38	Ocean North Sea	59N	1E	56.87N	3.49W
B3	UK	50.7N	1.32W	48.53N	5.23W	B39	North Sea	57.76N	1.95E	55.65N	2.51W
B4	Germany	53.05N	11.45E	51.17N	6.85E	B40	Slovakia	49.22N	19.35E	43.89N	16.97E
В5	Germany	52.38N	9.96E	50.46N	5.47E	B41	South Carolina, USA	33.15N	80.46W	33.2N	71.45W
B6	North Atlantic	29.98N	76.52W	29.74N	67.86W	B42	Antarctica	61.85S	42.93W	61.74S	51.57W
B7	Siberia, Russia	62.66N	64.36E	62.7N	57.04E	B43	Venezuela	9.78N	71.06W	7.32N	63.63W
B8	Siberia, Russia	61.76N	63.6E	61.77N	56.46E	B44	Venezuela	9.32N	70.68W	6.87N	63.24W
B9	New Zealand	41.53S	173.58E	-53.73S	176.39W	B45	Venezuela	9.38N	70.55W	6.94N	63.11W
B10	India	23.25N	72.5E	8.79N	66.03E	B46	Venezuela	9.2N	70.78W	6.75N	63.33W
B11	Antarctica	64.28S	56.75W	64.09S	59.81W	B47	Georgia, USA	32.93N	81.65W	33.08N	72.66W
B12	Antarctica	64.22S	56.63W	64.03S	59.69W	B48	Georgia, USA	33.03N	81.7W	33.18N	72.69W
B13	North Atlantic	45N	53W	42.97N	43.08W	B49	Georgia, USA	33.18N	81.78W	33.34N	72.76W
B14	Siberia, Russia	66.76N	77.46E	67.33N	69.26E	B50	Georgia, USA	33.23N	81.9W	33.39N	72.87W
B15	Siberia, Russia	66.4N	74.85E	66.86N	66.71E	B51	Georgia, USA	33.2	81.96	33.37	72.94
B16	Siberia, Russia	67.46N	75.96E	67.96N	67.54E	B52	New Zealand	45.66S	170.65E	53.13S	167.83E
B17	Japan	34.45N	134.85E	42.11N	129.39E	B53	New Zealand	45.28S	170.85E	52.77S	167.52E
B18	New Zealand	45.28S	170.83E	52.77S	167.54W	B54	New Zealand	45.9S	170.43E	53.35S	168.14E
B19	India	22.83N	88.43E	4.34N	80.1E	B55	China	39.5N	75.98E	39.12N	70.15E

B20	Argentina	53.95S	68.25W	56.29S	58.2W	B56	Australia	34.9S	138.6E	56.78S	133.52E
B21	North Atlantic	67.65N	56.68W	65.38N	41.45W	B57	North Sea	58.5N	0.5W	56.34N	4.87W
B22	North Atlantic, Greenland Sea	75.48N	6.95E	70.53N	13.07E	B58	Kamchatka, Russia	57.92	160.63	61.63	162.59
B23	France	48.85N	2.32E	46.76N	1.66W	B59	Turkey	41.65N	33.68E	38.63N	41.42E
B24	Netherlands	51.45N	4.3E	49.4N	0.11E	B60	Novosibirsk, Russia	54.58N	77.02E	55.18N	71.05E
B25	North Atlantic, Norwegian Sea	67.7N	1.03W	63.95N	4.78W	B61	Kazakhstan	51.98N	76.15E	52.55N	70.48E
B26	Denmark	56.02N	10.26E	54.11N	5.5E	B62	Ukraine	50.16N	30E	48.86N	24.98E
B27	India	16.68N	81.9E	0.06S	72.6E	B63	India	27.06N	95.02E	7.17N	86.88E
B28	Labrador Sea	53.32N	45.25W	50.75N	34.5W	B64	Aral Sea	47.16N	61.13E	47.11N	55.9E
B29	New Zealand	42S	173.75E	54.08S	175.82W	B65	Italy	39.93N	16.46E	34.79N	13.37E
B30	India	25.33N	90.68E	6.31N	82.68E	B66	Hungary	47.06N	19.55E	41.72N	16.91E
B31	France	48.88N	2.58E	46.79N	1.41W	B67	Volgograd, Russia	48N	44.46E	47.25N	39.31E
B32	France	48.86N	2.35E	46.77N	1.63W	B68	Borneo	3.25N	110.72E	7.31N	113.7E
B33	France	48.83N	2.48E	46.74N	1.5W	B69	Spain	41.48N	1.38E	39.7N	1.85W
B34	France	48.93N	2.45E	46.84N	1.54W	B70	Slovakia	48.66N	19.65E	43.31N	17.17E
B35	Argentina	51.58S	72.22W	54.04S	62.6W	B71	Texas, USA	30.63N	96.55W	31.92N	87.86W
B36	Southern Ocean	45.03S	144.32E	65.71S	147.17E						

Early Oligocene (Rupelian)

Locality	General	Modern	Modern		Rotated Lo		Locality General		Modern		Rotated	
Code	Location	Lat.	Long.	Lat.	Long.	Code	Location	Lat.	Long.	Lat.	Long.	
R1	Belgium	51.4N	4.9E	50.87N	1.35E	R63	Germany	51.42N	6.5E	50.93N	2.93E	
R2	Belgium	51.2N	5.1E	50.67N	1.56E	R64	North Atlantic	33.15N	77.43W	32.92N	71.14W	
R3	Belgium	51.1N	5.36E	50.58N	1.82E	R65	Egypt	30.65N	29.15E	27.56N	26.15E	
R4	Germany	53.05N	11.45E	52.67N	7.72E	R66	North Atlantic	53.32N	45.25W	51.82N	38.03W	
R5	Germany	52.53N	7.3E	52.05N	3.65E	R67	Turkey	38.82N	42.12E	36.01N	47.62E	
R6	Germany	52.38 N	9.96E	51.97N	6.29E	R68	Turkey	38.82N	42.12E	36.01N	47.62E	
R7	Italy	40.16N	16.5E	37.44N	14.35E	R69	Germany	51.25N	12.35E	50.9N	8.73E	
R8	Italy	43.38N	12.56E	40.8N	10.77E	R70	Poland	52.83N	16.55E	52.58N	12.8E	

R9	Italy	43.53N	13.58E	40.91N	11.75E	R71	Germany	54N	10.06E	53.59N	6.28E
R10	Italy	43.56N	12.56E	40.98N	10.78E	R72	Germany	49.45N	8.52E	49N	5.04E
R11	Italy	45.63N	11.36E	43.09N	9.78E	R73	Germany	52.2N	8.58E	51.75N	4.94E
R12	Italy	45.65N	11.4E	43.11N	9.82E	R74	Germany	52.38N	7.28E	51.9N	3.64E
R13	Belgium	51.25N	4.38E	50.71N	0.84E	R75	Germany	52.52N	13.42E	52.19N	9.71E
R14	Poland	49.33N	20.93E	46.45N	19.14E	R76	Turkey	41.45N	26.75E	38.42N	24.24E
R15	North Sea	55N	6E	54.49N	2.2E	R77	Nigeria	5.35N	6.5E	3.05N	2.9E
R16	North	52.56N	161.2W	45.17N	143.71W	R78	Belgium	50.82N	5.43E	50.3N	1.9E
R17	Japan	42.92N	142.03E	44.57N	139.41E	R79	Germany	49.9N	8.03E	49.44N	4.53E
R18	Japan	43.06N	143.83E	44.72N	141.26E	R80	France	48.96N	2.18E	48.37N	-1.2W
R19	Japan	37N	140.85E	44.22N	137.42E	R81	France	48.93N	2.56E	48.34N	0.83W
R20	North	45N	53W	43.78N	46.22W	R82	France	48.95N	2.92E	48.37N	0.47W
R21	India	22.83N	88.43E	9.42N	83.94E	R83	France	48.8N	2.12E	48.2N	1.25W
R22	Australia	34.33S	142.4E	51.08S	138.85E	R84	Barents Sea	73.52N	16.43E	73.23N	9.79E
R23	Australia	34.22S	140.85E	51.1S	136.8E	R85	Southern	42.25S	143.48E	58.84S	142E
R24	North	63.35N	7.78W	62.53N	12W	R86	Southern	43.92S	154.28E	58.97S	157.63E
R25	North	67.78N	5.38E	67.24N	0.25E	R87	Deleted due to poo	r age constrain	1		
R26	Atlantic North	75.48N	6.95E	73.04N	11.82E	R88	Argentina	53.83S	67.7W	55.5S	58.19W
R27	North	78.38N	1.35E	75.96N	7.2E	R89	Poland	49.62N	21.38E	49.49N	17.81E
R28	South	51S	46.96W	51.67S	37.32W	R90	Mississippi,	31.66N	88.63W	31.91N	82.42W
R29	South	47.56S	24.63W	47.08S	15.43W	R91	USA Alabama,	31.58N	88.1W	31.81N	81.89W
R30	Atlantic	66.95N	6.45W	66.15N	11.12W	R92	USA Mississippi,	31.72N	88.66W	31.97N	82.44W
R31	Atlantic Tunisia	36.26N	8.9E	33.83N	6.78E	R93	USA Mississippi,	31.83N	88.7W	32.08N	82.48W
R32	Tunisia	36.95N	8.75E	34.53N	6.68E	R94	USA North Sea	57.76N	1.95E	57.15N	2W
R33	Southern	43.95S	149.92E	59.7S	151.64E	R95	Antarctica	77.18S	163.7E	77.66S	155.45E
R34	Ocean Southern	42.6S	144.4E	59.09S	143.4E	R96	North Atlantic	55.25N	22.08W	54.17N	25.32W
R35	Ocean France	48.85N	2.32E	48.26N	1.06W	R97	North Atlantic	67.78N	5.38E	67.24N	0.25E
R36	Italy	43.53N	13.58E	40.91N	11.75E	R98	Florida, USA	27.03N	81.75W	27N	75.8W
R37	Netherlands	51.45N	4.3E	50.9N	0.75E	R99	Florida, USA	27.36N	81.43W	27.31N	75.46W
									04.0511	07.41	

	Atlantic										
R39	Denmark	56.02N	10.26E	55.61N	6.33E	R101	Florida, USA	27.7N	80.43W	27.61N	74.44W
R40	UK	50.68N	1.3W	50.01N	4.73W	R102	Dunedin, New Zealand	45.18S	170.9E	51.89S	173.0W
R41	India	16.68N	81.9E	4.7N	76.58E	R103	Fiordland,New	46.05S	166.53E	52.42S	178.16W
R42	Poland	49.4N	19.93E	46.56N	18.2E	R104	Westland,New	41.75S	171.46E	53.22S	178.19E
R43	Poland	49.4N	19.95E	46.56N	18.22E	R105	China	39.5N	75.98E	39.68N	72.02E
R44	Poland	49.4N	20.05E	46.55N	18.31E	R106	Kazakhstan	43.26N	55.55E	43.97N	52.47E
R45	Poland	49.4N	20.13E	46.55N	18.39E	R107	Poland	53.23N	15.2E	52.95N	11.43E
R46	Poland	49.35N	20.18E	46.5N	18.43E	R108	Poland	53.52N	20.96E	53.38N	17.13E
R47	Poland	49.36N	20.3E	46.5N	18.55E	R109	Poland	54.62N	18.08E	54.41N	14.19E
R48	Poland	49.36N	19.85E	46.52N	18.12E	R110	Poland	52.93N	18.8E	52.74N	15.02E
R49	Poland	49.33N	19.86E	46.49N	18.13E	R111	Kamchatka,	57.92N	160.63E	60.07N	163.41E
R50	Poland	49.33	19.96E	46.48N	18.22E	R112	Albania	41.33N	19.82E	38.5N	17.6E
R51	Poland	49.33N	19.93E	46.49N	18.2E	R113	Rostov, Russia	57.2N	39.42E	57.52N	35.33E
R52	Poland	49.35N	19.93E	46.51N	18.2E	R114	Hungary	47.06N	19.55E	44.23N	17.68E
R53	Poland	49.38N	20.13E	46.53N	18.39E	R115	Volgograd, Russia	48N	44.46E	48.45N	41.04E
R54	Poland	49.3N	19.86E	46.46N	18.13E	R116	Slovakia	48.66N	19.65E	45.83N	17.88E
R55	Poland	49.28N	19.83E	46.44N	18.1E	R117	Romania	47.22N	23.18E	44.28N	21.14E
R56	Poland	49.28N	19.95E	46.44N	18.21E	R118	Ukraine	48.63N	23.88E	45.67N	21.88E
R57	Poland	49.28N	19.86E	46.44N	18.13E	R119	Romania	46.28N	26.58E	46.29N	23.18E
R58	Poland	49.28N	19.95E	46.44N	18.21E	R120	France	46.08N	6.48E	45.59N	3.2E
R59	Poland	49.3N	19.92E	46.46N	18.18E	R121	France	46.05N	6.38E	45.56N	3.1E
R60	Poland	49.36N	19.82E	46.52N	18.09E	R122	Egypt	31.03N	30.08E	27.92N	27.06E
R61	Poland	49.38N	20.02E	46.53N	18.28E	R123	Antarctica	77S	163.72E	77.48S	155.55E
R62	South China Sea	18.83N	116.56E	20.98N	116.86E	R124	Antarctica	61.858	42.93W	61.74S	51.57W

- 978 Appendix 1B. Major categories of northern hemisphere latitudinal response, and
- 979 constituent taxa, for dinoflagellate cysts occurring in both the Bartonian and
- 980 **Rupelian (see also: Supplementary Data: latitudinal ranges)**
- 981
- 982 W = low latitude / warm water form
- 983 C = high latitude / cold water form
- 984 M = mid-latitude/temperate form
- 985 H = heterotrophic
- 986
- 987 NB: taxa with broader ecological ranges, or for which different ecological
- 988 assignments have previously been published, have not been classified below. For full
- 989 details see Supplementary Data.
- 990
- 991(i)Dinoflagellate species showing negligible change in their maximum northern hemisphere range between the992Bartonian and Rupelian.
- 993

Achilleodinium biformoides	Deflandrea leptodermata	Η	W	Phelodinium pumilum	Н
		**			**
Achilleodinium latispinosum	Deflandrea musculopsis	Η		Phthanoperidinium	Н
				geminatum	
Achomosphaera multifurcata	Deflandrea phosphoritica	Η		Phthanoperidinium	Н
	phosphoritica attenuata			levimurum	
Achomosphaera triangulata	Deflandrea phosphoritica	Н		Samlandia reticulifera	
	spinulosa				
Amphorosphaeridium	Diphyes colligerum			Sentusidinium stipulatum	
multispinosum					
Apteodinium maculatum	Distatodinium scariosum			Spiniferites microceras	
Areoligera undulata	Enneadocysta arcuata			Spiniferites ramosus	
				granomembranaceus	
Areosphaeridium diktyoplokum	Florentinia laciniata			Spiniferites twistringiensis	

			propria					
Batiacasphaera baculata			Gerdiocysta aciculata			Svalbardella cooksoniae	Н	С
Batiacasphaera micropapillata			Heteraulacacysta porosa		М	Thalassiphora patula		
Bellatudinium hokkaidoanum			Homotryblium caliculum			Wetzeliella articulata	Н	
Cerebrocysta bartonensis			Homotryblium			Wetzeliella cf. clathrata	Н	
			tenuispinosum					
Cerodinium leptodermum	Н		Impagidinium dispertitum		W	Wetzeliella gochtii	Н	
Cerodinium wardense	Н	М	Lejeunecysta hyalina	Н		Wetzeliella lunaris	Н	
Cyclonephelium compactum			Membranilarnacia			Wilsonidinium	Н	С
			angustivela			echinosuturatum		
Deflandrea granulata	Н	W	Pentadinium taeniagerum					

No. heterotrophic species = 18

994		
995 996	(ii)	Dinoflagellate species extending their maximum northern limit in the northern hemisphere in the Rupelian compared to the Bartonian
997		

Achomosphaera crassipellis		Heteraulacacysta	Phthanoperidinium	Н	
		fehmarnensis	comatum		
Adnatosphaeridium robustum		Homotryblium floripes	Phthanoperidinium	Н	
			coreoides		
Adnatosphaeridium vittatum		Homotryblium	Polysphaeridium asperum		
		oceanicum			
Apectodinium homomorphum	Н	Homotryblium plectilum	Polysphaeridium subtile		
Apectodinium hyperacanthum	Н	Homotryblium vallum	Polysphaeridium zoharyi		W
Apteodinium australiense		Hystrichokolpoma	Polysphaeridium zoharyi		
		granulatum	subsp. ktana		
Apteodinium emslandense		Hystrichokolpoma	Rhombodinium perforatum	Н	М
		poculum			
Caligodinium amiculum		Hystrichokolpoma	Riculacysta perforata		
		rigaudiae			
Cleistosphaeridium ancyreum		Hystrichosphaeropsis	Selenopemphix armata	Н	
		rectangularis			
Cleistosphaeridium		Hystrichostrogylon	Selenopemphix nephroides	Н	
diversispinosum		coninckii			

Cleistosphaeridium			Hystrichostrogylon			Selenpemphix selenoides	Н	
placacanthum			membraniphorum					
Cordosphaeridium			Impagidinium		W	Spiniferella cornuta		
cantharellus			maculatum					
Cordosphaeridium minimum			Impagidinium			Spiniferites bulloideus		
			paradoxum					
Cordosphaeridium robustum			Impletosphaeridium			Spiniferites hyperacanthus		
			kroemmelbeinii					
Dapsilidinium pastielsi			Impletosphaeridium			Spiniferites membranaceus		
			ligospinosum					
Deflandrea heterophlycta	Н		Impletosphaeridium			Spiniferites mirabilis		W
			multispinosum					
Deflandrea oebisfeldensis	Н	М	Impletosphaeridium			Spiniferites perforatus		
			rugosum					
Deflandrea phosphoritica	Н		Lejeunecysta cinctoria	Н		Spiniferites pseudofurcatus		
Deflandrea phosphoritica	Н		Lejeunecysta fallax	Н		Spiniferites ramosus		
australis								
Dinopterygium cladoides		М	Lejeunecysta tenella	Н		Spiniferites ramosus		
						gracilis		
Diphyes ficusoides		М	Lingulodinium		W	Surculosphaeridium?		
			machaerophorum			oceaniae		
Distatodinium paradoxum			Lingulodinium			Tectatodinium pellitum		W
			pycnospinosum					
Distatodinium tenerum			Litosphaeridinium			Thalassiphora pelagica		
			mamellatum					
Dracodinium laszczynskii	Н		Melitasphaeridium			Thalassiphora reticulata		
			asterium					
Elytrocysta brevis			Membranophoridium			Thalassiphora velata		W
			aspinatum					
Fibrocysta vectensis			Nematosphaeropsis			Trinovantedinium boreale		
			reticulensis					
Glaphyrocysta intricata			Operculodinium		W	Tubiosphaera magnifica		
			centrocarpum					
Glaphyrocysta microfenestrata			Operculodinium			Turbiosphaera symmetrica		
			eisenackii					
Glaphyrocysta pastielsi			Operculodinium tiara			Wetzeliella ovalis	Н	
Glaphyrocysta paupercula			Operculodinium			Wetzeliella simplex	Н	

	uncinispinosum		
Glaphyrocysta reticulosa	Operculodinium		cf. Wetzeliella symmetrica
	xanthium		
Glaphyrocysta vicina	Palaeocystodinium	Н	Xenicodinium conispinum
	golzowense		
Glyphanodinium facetum	Pentadinium laticinctum		Ynezidinium brevisulcatum
	granulatum		
Gonyaulacysta giuseppei	Pentadinium		
	lophophorum		
Heteraulacacysta campanula	Phthanoperidinium	Н	
	eocenicum		

No. heterotrophic species = 20

998

999 (iii) Dinoflagellate species with a reduced maximum northern limit in the northern hemisphere in the Rupelian compared

1000	to the Bartonian
------	------------------

Achomosphaera alcicornu	Eocladopyxis peniculata	Pentadinium goniferum	
Achomosphaera ramulifera	Fibrocysta axialis	Pentadinium laticinctum	
Adnatosphaeridium	Glaphyrocysta	Phthanoperidinium	Н
multispinosum	divaricata	alectrolophum	
Areoligera coronata	Glaphyrocysta	Phthanoperidinium	Н
	exuberans	filigranum	
Areoligera senonensis	Glaphyrocysta	Phthanoperidinium	Н
	laciniiformis	multispinum	
Areoligera sentosa	Glaphyrocysta ordinata	Phthanoperidinium	Н
		resistente	
Areoligera tauloma	Glaphyrocysta semitecta	Phthanoperidinium	Н
		stockmansii	
Areosphaeridium michoudii	Glaphyrocysta texta	Polysphaeridium	
		congregatum	
Batiacasphaera compta	Heteraulacacysta	Pterodinium cingulatum	
	leptalae		
Batiacasphaera hirsuta	Homotryblium	Pyxidiella scrobiculata	Η
	abbreviatum		

Charlesdownia reticulata	Н		Homotryblium pallidum			Rhombodinium draco	Н	М
Charlesdownia variabilis	Н		Homotryblium floripes			Rhombodinium	Н	
			breviradiatum			longimanum		
Cordosphaeridium exilimurum			Hystrichokolpoma		М	Rhombodinium porosum	Н	
			cinctum					
Cordosphaeridium			Hystrichokolpoma		W	Rottnestia borussica		С
fibrospinosum			globulus					
Cordosphaeridium			Hystrichokolpoma			Samlandia chlamydophora		
funiculatum			salacia					
Cordosphaeridium gracile			Hystrichosphaeridium		М	Selenopemphix coronata	Н	
			tubiferum					
Cordosphaeridium inodes			Impagidinium aculeatum		W	Spiniferites cornuta		
Corrudinium incompositum			Impagidinium velorum			Spiniferites monilis		
Cribroperidinium giuseppei			Impletosphaeridium			Spiniferites ramosus		
			insolitum			granosus		
Dapsilidinium			Lentinia serrata	Н		Sumatradinium hispidum	Н	
pseudocolligerum								
Dapsilidinium simplex			Lentinia? wetzelii	Н		Tanyosphaeridium		
						regulare		
Deflandrea arcuata	Н	W	Melitasphaeridium			Thalassiphora delicata		
			pseudorecurvatum					
Deflandrea denticulata	Н		Microdinium reticulatum			Thalassiphora fenestrata		
Distatodinium craterum			Nematosphaeropsis			Turbiosphaera galatea		
			lemniscata					
Distatodinium ellipticum			Operculodinium			Wilsonidium intermedium	Н	
			divergens					
Enneadocysta multicornuta			Operculodinium			Wilsonidium tabulatum	Н	
			microtriainum					
Enneadocysta pectiniformis		М	Paucisphaeridium					
			inversibuccinum					
No. heterotrophic species = 19								

1007 Figure and Table captions

- 1008
- 1009 Fig. 1. Eocene Oligocene geochronology and temporal δ^{18} O curve showing key
- 1010 climate events. Based on Gradstein et al. (2012, fig. 28.11). NB: Wade et al (2012)
- 1011 show the Eocene Oligocene boundary at about 33.7 Ma
- 1012
- 1013 Fig. 2. Bartonian stratigraphy and age ranges of successions investigated as part of
- 1014 this study. Range bars do not necessarily imply the presence of all the corresponding
- 1015 stratigraphical units. Ages and correlations of stratigraphical units based on Gradstein
- 1016 et al. (2012). Locality details are summarised in Appendix 1A. For source literature
- 1017 and comprehensive data relating to these localities, see Supplementary Data.
- 1018
- 1019 Fig. 3. Rupelian stratigraphy and age ranges of successions investigated as part of this
- 1020 study. Range bars do not necessarily imply the presence of all the corresponding
- 1021 stratigraphical units. Ages and correlations of stratigraphical units based on Gradstein
- 1022 et al. (2012). Locality details are summarised in Appendix 1A. For source literature
- 1023 and comprehensive data relating to these localities, see Supplementary Data.
- 1024
- 1025 Fig. 4. Global data and palaeogeography maps. (A, B): maps showing the modern and
- 1026 Bartonian/Rupelian palaeo co-ordinates of data points used in this study. See
- 1027 Supplementary Data for individual locality details; (C, D): Eocene and Oligocene
- 1028 palaeogeography based on maps produced by Ron Blakey, Colorado Plateau
- 1029 Geosystems.
- 1030

1031 Fig. 5. DCA sample scatter plots of the (A) Bartonian (460 species, 71 samples) and

1032 (B) Rupelian (486 species, 122 samples) datasets (note that outlier sample R41 was

- 1033 omitted). Northern Hemisphere samples = filled symbols, Southern Hemisphere
- 1034 samples = open symbols
- 1035
- 1036 Fig. 6. DCA sample scatter plots of the Bartonian (A, B 365 species, 55 samples)
- 1037 and Rupelian (C, D 449 species, 106 samples) Northern Hemisphere datasets. (A,
- 1038 C): symbols represent ocean basins. Arctic Ocean: black squares; Atlantic Ocean: dark
- 1039 grey circles; Tethys Ocean: brown diamonds; North Sea: pink diamonds; Indian
- 1040 Ocean: beige stars; Pacific Ocean: light grey squares. (B, D): colours represent
- 1041 northern latitude classes. $80 70^{\circ}$: darkest blue-purple; $70 60^{\circ}$: dark blue; $60 50^{\circ}$:
- 1042 light blue; $50 40^{\circ}$: green; $40 30^{\circ}$: yellow; $30 20^{\circ}$: orange; $10 0^{\circ}$: red.
- 1043
- 1044 Fig. 7. DCA sample scatter plot of combined Bartonian-Rupelian dataset (only
- 1045 offshore Atlantic and Arctic locations, see text for more details) with 15 active
- 1046 Bartonian samples (filled symbols) and 21 supplementary Rupelian samples (open
- 1047 symbols). For colour coding of latitude classes, see legend Fig. 6 B, D.
- 1048
- 1049 Fig. 8. Geographical plots for selected species showing change in global occurrence
- 1050 between the Bartonian and Rupelian. Species are plotted using palaeo co-ordinates on
- 1051 a modern base map.
- 1052
- 1053 Fig. 9. Global plots of temperature sensitive / latitudinally diagnostic dinoflagellate
- 1054 cyst taxa that occur in both the Bartonian and Rupelian. (A): Bartonian global

1055 distribution of warm-water/ low-latitude indicator dinoflagellate cyst taxa; (B):

1056 Rupelian global distribution of warm-water / low-latitude indicator dinoflagellate cyst

- 1057 taxa; (C): Bartonian global distribution of cool-water / high-latitude indicator
- 1058 dinoflagellate cyst taxa; (D) Rupelian global distribution of cold-water / high-latitude
- 1059 indicator dinoflagellate cyst taxa.

- 1061 Table 1. The temperature/latitude affinities of dinoflagellate cyst taxa occurring in
- 1062 both the Bartonian and Rupelian, based on published literature. Excludes species
- 1063 interpreted as broad-ranging / mid-latitude / temperate or cosmopolitan, except for
- 1064 instances where this is contradicted by multiple literature records. Latitude
- 1065 assignments are qualified NH (Northern Hemisphere) or SH (southern hemisphere),
- 1066 where it is not known from the source literature if this can be extrapolated to both
- 1067 hemispheres.
- 1068
- 1069 Supplementary Fig. 1. DCA sample scatter plots, Northern Hemisphere datasets,
- 1070 showing North Sea, Atlantic Ocean and Arctic Ocean samples only. Bartonian: 39
- 1071 samples (318 species), outliers (20, 35) removed; Rupelian: 49 samples (356 species),
- 1072 outliers (77, 28, 29, 88) removed. Symbols represent ocean basins: Arctic Ocean =
- 1073 black squares; Atlantic Ocean = dark grey circles; North Sea = pink diamonds. Fill of
- 1074 symbols distinguishes inshore (open) and offshore (filled). Also see TextFig. 6 (A, C).
- 1075
- 1076 Supplementary Fig. 2. DCA sample scatter plots, Northern Hemisphere datasets,
- 1077 showing North Sea and Atlantic Ocean samples only. Bartonian : 31 samples (282
- 1078 species), outliers (20, 35) removed; Rupelian: 48 samples (350 species), outliers (77,
- 1079 28, 29, 88) removed. Symbols represent ocean basins: Atlantic Ocean = dark grey

- 1080 circles; North Sea = pink diamonds. Fill of symbols distinguishes inshore (open) and
- 1081 offshore (filled). Also see TextFig. 6 (A, C).

- data point; modern co-ordinates
- o data point; palaeo co-ordinates

	TAXON	INTREPRETATION	REFERENCE
Temperature / latitude diagnostic species that <u>have not</u> been variably interpreted by different authors Temperature / latitude diagnostic species that have been variably interpreted by different authors	Deflandrea antarctica	High latitude(SH)	Williams et al. (2004)
	Deflandrea arcuata	Low latitude (exclusively)	Brinkhuis & Biffi (1993)
	Deflandrea leptodermata	Low latitude (exclusively)	Brinkhuis & Biffi (1993)
	Hystrichokolpoma globulus	Low latitude (exclusively)	Brinkhuis & Biffi (1993)
	Hystrichosphaeridium truswelliae	High latitude (SH)	Williams et al. (2004)
	Impagidinium dispertitum	Low latitude (exclusively)	Brinkhuis & Biffi (1993)
	Impagidinium maculatum	Low latitude (exclusively)	Brinkhuis & Biffi (1993)
	Lingulodinium machaerophorum	Warm water	Marret & Zonneveld (2003)
	Octodinium askiniae	High latitude (SH)	Williams et al. (2004)
	Operculodinium israelianum	Tropical - temperate water	Marret & Zonneveld (2003); De Schepper et al. (2009)
	Polysphaeridium zoharyi	Warm water	Head & Norris (1989); Marret & Zonneveld (2003)
	Rottnestia borussica	High latitude	Brinkhuis & Biffi (1993) cited in Van Mourik et al. (2001)
	Spinidinium macmurdoense	High latitude (SH)	Williams et al. (2004)
	Spiniferites mirabilis	Warm water	McMahon (1997); Marret & Zonneveld (2003); De Schepper et al. (2009)
	Svalbardella cooksoniae	Cold water	Van Simaeys (2004)
	Tectatodinium pellitum	Warm water	Head (1994) cited in Jaramillo et al. (1999); Marret & Zonneveld (2003)
	Thalassiphora velata	Low latitude (exclusively)	Brinkhuis & Biffi (1993)
	Wilsonidinium echinosuturatum	High latitude (SH)	Williams et al. (2004)
	Achomosphaera alcicornu	Low to high latitudes High latitude	Williams et al. (2004) Brinkhuis & Biffi (1993), cited in
			Van Mourik et al. (2001)
	Corrudinium incompositum	Mid latitude, low latitude	Williams et al. (2004)
		High latitude	Brinkhuis & Biffi (1993) cited in Van Mourik et al. (2001)
	Deflandrea granulata	Low latitude (exclusively)	Brinkhuis & Biffi (1993)
		Transantarctic Flora	Guerstein et al. (2008)
	Glaphyrocysta semitecta	Mid latitude (NH), low latitude	Williams et al. (2004)
		High latitude	Brinkhuis & Biffi (1993) cited in Van Mourik et al. (2001)
	Hystrichosphaeridium tubiferum	Mid latitude (NH)	Williams et al. (2004)
		Transantarctic Flora	Guerstein et al. (2008)
	Operculodinium centrocarpum	Warm-temperate	McMahon (1997)
		Cosmopolitan (Arctic to tropical)	De Schepper et al. (2009)
	Schematophora speciosa	Low latitude, mid latitude (SH), high latitude (SH)	Williams et al. (2004)
		Warm water	Shipboard Scientific Party (2001)
		Low latitude (exclusively)	Brinkhuis & Biffi (1993)
	Selenopemphix nephroides	Cold water	Guerstein et al. (2008)
		Extremely warm water	Marret & Zonneveld (2003)
	Stoveracysta ornata	Low latitude, mid latitude (SH), high latitude (SH)	Williams et al. (2004)
		Low latitude (exclusively)	Brinkhuis & Biffi (1993)

