1,458 research outputs found

    Light effective hole mass in undoped Ge/SiGe quantum wells

    Full text link
    We report density-dependent effective hole mass measurements in undoped germanium quantum wells. We are able to span a large range of densities (2.0−11×10112.0-11\times10^{11} cm−2^{-2}) in top-gated field effect transistors by positioning the strained buried Ge channel at different depths of 12 and 44 nm from the surface. From the thermal damping of the amplitude of Shubnikov-de Haas oscillations, we measure a light mass of 0.061me0.061m_e at a density of 2.2×10112.2\times10^{11} cm−2^{-2}. We confirm the theoretically predicted dependence of increasing mass with density and by extrapolation we find an effective mass of ∼0.05me\sim0.05m_e at zero density, the lightest effective mass for a planar platform that demonstrated spin qubits in quantum dots

    Antithrombotic Treatment for Acute Extracranial Carotid Artery Dissections: A Meta-Analysis

    Get PDF
    IntroductionCarotid artery dissection is a leading cause of stroke in younger patients, with an associated prevalence of 2.6–3.0 per 100,000 population. This meta-analysis aims to determine whether in patients managed medically, treatment with anticoagulants or antiplatelet agents was associated with a better outcome with respect to mortality, ischaemic stroke, and major bleeding episodes.Patients and methodsA comprehensive search strategy was employed of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (January 1966 to March 2015), and EMBASE (January 1980 to March 2015) databases. Primary outcomes were death (all causes) or disability. Secondary outcomes were ischaemic stroke, symptomatic intracranial haemorrhage, and major extracranial haemorrhage during the reported follow-up period.ResultsNo completed randomized trials were found. Comparing antiplatelets with anticoagulants across 38 studies (1,398 patients), there were no significant differences in the odds of death (effects size, ES, −0.007, p = .871), nor in the death and disability comparison or across any secondary outcomes.ConclusionThere were no randomised trials comparing either anticoagulants or antiplatelets with control, thus there is no level 1 evidence to support their routine use for the treatment of carotid artery dissection. Also, there were no randomised trials that directly compared anticoagulants with antiplatelet drugs, and the reported non-randomised studies did not show any evidence of a significant difference between the two

    Model-based Probe State Estimation and Crack Inverse Methods Addressing Eddy Current Probe Variability

    Get PDF
    Recent work on model-based inverse methods with eddy current inspections of surface breaking discontinuities has shown some sizing error due to variability in probes with the same design specifications [1]. This is an important challenge for model-based inversion crack sizing techniques, to be robust to the varying characteristics of eddy current probes found in the field [1-2]. In this paper, a model-based calibration process is introduced that estimates the state of the probe. First, a carefully designed surrogate model was built using VIC-3D® simulations covering the critical range of probe rotation angles, tilt in two directions, and probe offset (liftoff) for both tangential and longitudinal flaw orientations. Some approximations and numerical compromises in the model were made to represent tilt in two directions and reduce simulation time; however, this surrogate model was found to represent the key trends in the eddy current response for each of the four probe properties in experimental verification studies well. Next, this model was incorporated into an iterative inversion scheme during the calibration process, to estimate the probe state while also addressing the gain/phase fit and centering the calibration notch indication. Results are presented showing several examples of the blind estimation of tilt and rotation angle for known experimental cases with good agreement within +/- 2.5 degrees. The RMS error was found to be significantly reduced by fitting the probe state and, in many instances, probe state estimation addresses the previously un-modelled characteristics (model error) with real probe inversion studies. Additional studies are presented comparing the size of the calibration notch and the quality of the calibration fit, where calibrating with too small or too large a notch can produce poorer inversion results. Once the probe state is estimated, the final step is to transform the base crack inversion surrogate model and apply it for crack characterization. Because of the dimensionality of this problem, simulations were made at a limited set of select flaw sizes with varying length, depth and width, and an interpolation scheme was used to address the effect of the probe state at intermediate solution points. Using this process, results are presented demonstrating improved crack inversion performance for extreme probe states

    A reusable benchmark of brain-age prediction from M/EEG resting-state signals

    Get PDF
    Population-level modeling can define quantitative measures of individual aging by applying machine learning to large volumes of brain images. These measures of brain age, obtained from the general population, helped characterize disease severity in neurological populations, improving estimates of diagnosis or prognosis. Magnetoencephalography (MEG) and Electroencephalography (EEG) have the potential to further generalize this approach towards prevention and public health by enabling assessments of brain health at large scales in socioeconomically diverse environments. However, more research is needed to define methods that can handle the complexity and diversity of M/EEG signals across diverse real-world contexts. To catalyse this effort, here we propose reusable benchmarks of competing machine learning approaches for brain age modeling. We benchmarked popular classical machine learning pipelines and deep learning architectures previously used for pathology decoding or brain age estimation in 4 international M/EEG cohorts from diverse countries and cultural contexts, including recordings from more than 2500 participants. Our benchmarks were built on top of the M/EEG adaptations of the BIDS standard, providing tools that can be applied with minimal modification on any M/EEG dataset provided in the BIDS format. Our results suggest that, regardless of whether classical machine learning or deep learning was used, the highest performance was reached by pipelines and architectures involving spatially aware representations of the M/EEG signals, leading to R^2 scores between 0.60-0.71. Hand-crafted features paired with random forest regression provided robust benchmarks even in situations in which other approaches failed. Taken together, this set of benchmarks, accompanied by open-source software and high-level Python scripts, can serve as a starting point and quantitative reference for future efforts at developing M/EEG-based measures of brain aging. The generality of the approach renders this benchmark reusable for other related objectives such as modeling specific cognitive variables or clinical endpoints

    Low disordered, stable, and shallow germanium quantum wells: a playground for spin and hybrid quantum technology

    Full text link
    Buried-channel semiconductor heterostructures are an archetype material platform to fabricate gated semiconductor quantum devices. Sharp confinement potential is obtained by positioning the channel near the surface, however nearby surface states degrade the electrical properties of the starting material. In this paper we demonstrate a two-dimensional hole gas of high mobility (5×1055\times 10^{5} cm2^2/Vs) in a very shallow strained germanium channel, which is located only 22 nm below the surface. This high mobility leads to mean free paths ≈6μm\approx6 \mu m, setting new benchmarks for holes in shallow FET devices. Carriers are confined in an undoped Ge/SiGe heterostructure with reduced background contamination, sharp interfaces, and high uniformity. The top-gate of a dopant-less field effect transistor controls the carrier density in the channel. The high mobility, along with a percolation density of 1.2×1011 cm−21.2\times 10^{11}\text{ cm}^{-2}, light effective mass (0.09 me_e), and high g-factor (up to 77) highlight the potential of undoped Ge/SiGe as a low-disorder material platform for hybrid quantum technologies

    Inversion of Eddy-Current Data via Conjugate Gradients

    Get PDF
    In a companion paper, [1], we developed a rigorous, nonlinear model for inverting eddy-current data by means of the conjugate gradient algorithm. In this paper we will present some results obtained from the linearized version of the rigorous model. In this version we assume that the electric field within the flaw is simply the incident field that exists in the absence of the flaw

    Stapling and Section of the Nasogastric Tube during Sleeve Gastrectomy: How to Prevent and Recover?

    Get PDF
    Bariatric surgery has become an integral part of morbid obesity treatment with well-defined indications. Some complications, specific or not, due to laparoscopic sleeve gastrectomy (LSG) procedure have recently been described. We report a rare complication unpublished to date: a nasogastric section during great gastric curve stapling. A 44-year-old woman suffered of severe obesity (BMI 36.6 kg/m2) with failure of medical treatments for years. According to already published technique, a LSG was performed. Six hours postoperatively, a nurse removed the nasogastric tube according to the local protocol and the nasogastric tube was abnormally short, with staples at its extremity. Surgery was performed with peroperative endoscopy. In conclusion, this is the first publication of a nasogastric section during LSG. Therefore we report this case and propose a solution to prevent its occurrence. To avoid this kind of accident, we now systematically insert the nasogastric tube by mouth through a Guedel cannula. Then, to insert the calibrating bougie, we entirely withdraw the nasogastric tube

    Benchmark Problems in Eddy-Current NDE

    Get PDF
    Inversion of eddy-current data and the reconstruction of flaws is the preeminent problem in electromagnetic nondestructive evaluation (NDE). This places a premium on developing good forward models for computing field-flaw interactions, because all inversion algorithms must, of necessity, rely on such calculations. There has evolved in recent years several sophisticated computational models for the forward problem [1–4], but these models differ significantly in their theoretical and numerical approaches. For example, [1-3] use a volume-integral approach that incorporates fast Fourier transforms with conjugate gradients to solve the resulting linear system of equations, whereas [4] uses finite-elements

    Experimental studies of the non-adiabatic escape problem

    Get PDF
    Noise-induced transitions between coexisting stable states of a periodically driven nonlinear oscillator have been investigated by means of analog experiments and numerical simulations in the nonadiabatic limit for a wide range of oscillator parameters. It is shown that, for over-damped motion, the field-induced corrections to the activation energy can be described quantitatively in terms of the logarithmic susceptibility (LS) and that the measured frequency dispersion of the corresponding corrections for a weakly damped nonlinear oscillator is in qualitative agreement with the theoretical prediction. Resonantly directed diffusion is observed in numerical simulations of a weakly damped oscillator. The possibility of extending the LS approach to encompass escape from the basin of attraction of a quasi-attractor is discussed

    Propofol requirement and EEG alpha band power during general anesthesia provide complementary views on preoperative cognitive decline

    Get PDF
    Background: Although cognitive decline (CD) is associated with increased post-operative morbidity and mortality, routinely screening patients remains difficult. The main objective of this prospective study is to use the EEG response to a Propofol-based general anesthesia (GA) to reveal CD. Methods: 42 patients with collected EEG and Propofol target concentration infusion (TCI) during GA had a preoperative cognitive assessment using MoCA. We evaluated the performance of three variables to detect CD (MoCA < 25 points): age, Propofol requirement to induce unconsciousness (TCI at SEF95: 8–13 Hz) and the frontal alpha band power (AP at SEF95: 8–13 Hz). Results: The 17 patients (40%) with CD were significantly older (p < 0.001), had lower TCI (p < 0.001), and AP (p < 0.001). We found using logistic models that TCI and AP were the best set of variables associated with CD (AUC: 0.89) and performed better than age (p < 0.05). Propofol TCI had a greater impact on CD probability compared to AP, although both were complementary in detecting CD. Conclusion: TCI and AP contribute additively to reveal patient with preoperative cognitive decline. Further research on post-operative cognitive trajectory are necessary to confirm the interest of intra operative variables in addition or as a substitute to cognitive evaluation
    • …
    corecore