18 research outputs found

    Cyclin-Dependent Kinase Inhibitor p27Kip1 Controls Growth and Cell Cycle Progression in Human Uterine Leiomyoma

    Get PDF
    The molecular mechanism of the cell-cycle machinery in uterine leiomyoma has not yet been fully elucidated. Among the various types of cell-cycle regulators, p27Kip1 (p27) is considered to be a potent tumor suppressor. To provide further molecular basis for understanding the progression of uterine leiomyoma, our objective was to evaluate the expression level of p27 in normal myometrium and uterine leiomyoma tissue and its effect on cytogenic growth. Western blot analysis, real-time polymerase chain reaction (PCR) and immunohistochemical staining revealed that p27 protein and messenger RNA were down-regulated in uterine leiomyoma tissue and cultured cells compared to normal myometerium. Full-length human p27 cDNA was transferred using a replication-deficient recombinant adenoviral vector (Ad.p27) into uterine leiomyoma cells and evaluated the effect on cell proliferation. Transfection of Ad.p27 into uterine leiomyoma cells resulted in the induction of apoptosis, reduction in viability and proliferation of uterine leiomyoma cells. Our results suggest a new paradigm that down-regulated p27 protein expression is the possible underlying mechanism for the growth of uterine leiomyoma and over-expression of p27 induces cell death. This study provides better understanding of the control exerted by p27 in regulating growth and disease progression of uterine leiomyoma

    Cell-Surface and Nuclear Receptors in the Colon as Targets for Bacterial Metabolites and Its Relevance to Colon Health

    No full text
    The symbiotic co-habitation of bacteria in the host colon is mutually beneficial to both partners. While the host provides the place and food for the bacteria to colonize and live, the bacteria in turn help the host in energy and nutritional homeostasis, development and maturation of the mucosal immune system, and protection against inflammation and carcinogenesis. In this review, we highlight the molecular mediators of the effective communication between the bacteria and the host, focusing on selective metabolites from the bacteria that serve as messengers to the host by acting through selective receptors in the host colon. These bacterial metabolites include the short-chain fatty acids acetate, propionate, and butyrate, the tryptophan degradation products indole-3-aldehyde, indole-3-acetic, acid and indole-3-propionic acid, and derivatives of endogenous bile acids. The targets for these bacterial products in the host include the cell-surface G-protein-coupled receptors GPR41, GPR43, and GPR109A and the nuclear receptors aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), and farnesoid X receptor (FXR). The chemical communication between these bacterial metabolite messengers and the host targets collectively has the ability to impact metabolism, gene expression, and epigenetics in colonic epithelial cells as well as in mucosal immune cells. The end result, for the most part, is the maintenance of optimal colonic health

    Unconventional Functions of Amino Acid Transporters: Role in Macropinocytosis (SLC38A5/SLC38A3) and Diet-Induced Obesity/Metabolic Syndrome (SLC6A19/SLC6A14/SLC6A6)

    No full text
    Amino acid transporters are expressed in mammalian cells not only in the plasma membrane but also in intracellular membranes. The conventional function of these transporters is to transfer their amino acid substrates across the lipid bilayer; the direction of the transfer is dictated by the combined gradients for the amino acid substrates and the co-transported ions (Na+, H+, K+ or Cl−) across the membrane. In cases of electrogenic transporters, the membrane potential also contributes to the direction of the amino acid transfer. In addition to this expected traditional function, several unconventional functions are known for some of these amino acid transporters. This includes their role in intracellular signaling, regulation of acid–base balance, and entry of viruses into cells. Such functions expand the biological roles of these transporters beyond the logical amino acid homeostasis. In recent years, two additional unconventional biochemical/metabolic processes regulated by certain amino acid transporters have come to be recognized: macropinocytosis and obesity. This adds to the repertoire of biological processes that are controlled and regulated by amino acid transporters in health and disease. In the present review, we highlight the unusual involvement of selective amino acid transporters in macropinocytosis (SLC38A5/SLC38A3) and diet-induced obesity/metabolic syndrome (SLC6A19/SLC6A14/SLC6A6)

    RETRACTED ARTICLE: Identification of a novel Na+-coupled Fe3+-citrate transport system, distinct from mammalian INDY, for uptake of citrate in mammalian cells

    No full text
    Abstract NaCT is a Na+-coupled transporter for citrate expressed in hepatocytes and neurons. It is the mammalian ortholog of INDY (I’m Not Dead Yet), a transporter which modifies lifespan in Drosophila. Here we describe a hitherto unknown transport system for citrate in mammalian cells. When liver and mammary epithelial cells were pretreated with the iron supplement ferric ammonium citrate (FAC), uptake of citrate increased >10-fold. Iron chelators abrogated the stimulation of citrate uptake in FAC-treated cells. The iron exporter ferroportin had no role in this process. The stimulation of citrate uptake also occurred when Fe3+ was added during uptake without pretreatment. Similarly, uptake of Fe3+ was enhanced by citrate. The Fe3+-citrate uptake was coupled to Na+. This transport system was detectable in primary hepatocytes and neuronal cell lines. The functional features of this citrate transport system distinguish it from NaCT. Loss-of-function mutations in NaCT cause early-onset epilepsy and encephalopathy; the newly discovered Na+-coupled Fe3+-citrate transport system might offer a novel treatment strategy for these patients to deliver citrate into affected neurons independent of NaCT. It also has implications to iron-overload conditions where circulating free iron increases, which would stimulate cellular uptake of citrate and consequently affect multiple metabolic pathways

    Potent Inhibition of Macropinocytosis by Niclosamide in Cancer Cells: A Novel Mechanism for the Anticancer Efficacy for the Antihelminthic

    No full text
    Niclosamide, a drug used to treat tapeworm infection, possesses anticancer effects by interfering with multiple signaling pathways. Niclosamide also causes intracellular acidification. We have recently discovered that the amino acid transporter SLC38A5, an amino acid-dependent Na+/H+ exchanger, activates macropinocytosis in cancer cells via amino acid-induced intracellular alkalinization. Therefore, we asked whether niclosamide will block basal and SLC38A5-mediated macropinocytosis via intracellular acidification. We monitored macropinocytosis in pancreatic and breast cancer cells using TMR-dextran and the function of SLC38A5 by measuring Li+-stimulated serine uptake. The peptide transporter activity was measured by the uptake of glycylsarcosine. Treatment of the cancer cells with niclosamide caused intracellular acidification. The drug blocked basal and serine-induced macropinocytosis with differential potency, with an EC50 of ~5 μM for the former and ~0.4 μM for the latter. The increased potency for amino acid-mediated macropinocytosis is due to direct inhibition of SLC38A5 by niclosamide in addition to the ability of the drug to cause intracellular acidification. The drug also inhibited the activity of the H+-coupled peptide transporter. We conclude that niclosamide induces nutrient starvation in cancer cells by blocking macropinocytosis, SLC38A5 and the peptide transporter. These studies uncover novel, hitherto unknown, mechanisms for the anticancer efficacy of this antihelminthic

    Expression and Function of StAR in Cancerous and Non-Cancerous Human and Mouse Breast Tissues: New Insights into Diagnosis and Treatment of Hormone-Sensitive Breast Cancer

    No full text
    Breast cancer (BC) is primarily triggered by estrogens, especially 17β-estradiol (E2), which are synthesized by the aromatase enzyme. While all steroid hormones are derived from cholesterol, the rate-limiting step in steroid biosynthesis is mediated by the steroidogenic acute regulatory (StAR) protein. Herein, we demonstrate that StAR mRNA expression was aberrantly high in human hormone-dependent BC (MCF7, MDA-MB-361, and T-47D), modest in hormone-independent triple negative BC (TNBC; MDA-MB-468, BT-549, and MDA-MB-231), and had little to none in non-cancerous mammary epithelial (HMEC, MCF10A, and MCF12F) cells. In contrast, these cell lines showed abundant expression of aromatase (CYP19A1) mRNA. Immunofluorescence displayed qualitatively similar patterns of both StAR and aromatase expression in various breast cells. Additionally, three different transgenic (Tg) mouse models of spontaneous breast tumors, i.e., MMTV-Neu, MMTV-HRAS, and MMTV-PyMT, demonstrated markedly higher expression of StAR mRNA/protein in breast tumors than in normal mammary tissue. While breast tumors in these mouse models exhibited higher expression of ERα, ERβ, and PR mRNAs, their levels were undetected in TNBC tumors. Accumulation of E2 in plasma and breast tissues, from MMTV-PyMT and non-cancerous Tg mice, correlated with StAR, but not with aromatase, signifying the importance of StAR in governing E2 biosynthesis in mammary tissue. Treatment with a variety of histone deacetylase inhibitors (HDACIs) in primary cultures of enriched breast tumor epithelial cells, from MMTV-PyMT mice, resulted in suppression of StAR and E2 levels. Importantly, inhibition of StAR, concomitant with E2 synthesis, by various HDACIs, at clinical and preclinical doses, in MCF7 cells, indicated therapeutic relevance of StAR in hormone-dependent BCs. These findings provide insights into the molecular events underlying the differential expression of StAR in human and mouse cancerous and non-cancerous breast cells/tissues, highlighting StAR could serve not only as a novel diagnostic maker but also as a therapeutic target for the most prevalent hormone-sensitive BCs
    corecore