152 research outputs found

    The initiation of post-synaptic protrusions

    Get PDF
    cited By 0The post-synaptic spines of neuronal dendrites are highly elaborate membrane protrusions. Their anatomy, stability and density are intimately linked to cognitive performance. The morphological transitions of spines are powered by coordinated polymerization of actin filaments against the plasma membrane, but how the membrane-associated polymerization is spatially and temporally regulated has remained ill defined. Here, we discuss our recent findings showing that dendritic spines can be initiated by direct membrane bending by the I-BAR protein MIM/Mtss1. This lipid phosphatidylinositol (PI(4,5)P2) signaling-activated membrane bending coordinated spatial actin assembly and promoted spine formation. From recent advances, we formulate a general model to discuss how spatially concentrated protein-lipid microdomains formed by multivalent interactions between lipids and actin/membrane regulatory proteins might launch cell protrusions. © 2016 The Author(s). Published with license by Taylor & Francis Group, LLC, Pirta Hotulainen and Juha Saarikangas.Peer reviewe

    Chaperoning junior faculty: Institutional support and guidance can relieve challenges for early-career group leaders and imporove academic performance

    No full text
    The initial excitement of finally leading an independent research group is quickly followed by the realization that it comes with novel challenges. The first day as a principal investigator sets the clock ticking on limited time and opportunities to publish and apply for grants and awards that all are required for tenure or the next job. Expectations are high: PIs must be outstanding scholars who establish their own research program, excel in teaching, and are helpful colleagues and mentors for their students and postdocs. Meeting such high expectations with little experience can cause anxiety and stress. Moreover, we are often our own worst critics; meeting high self‐expectations can be demanding even without external pressure. Based on our experiences as junior faculty, we herewith suggest a set of measures that could help early‐career group leaders to better handle this stress and allow them—and their host institutes—to flourish

    ABBA regulates plasma-membrane and actin dynamics to promote radial glia extension

    Get PDF
    Radial glia play key roles in neuronal migration, axon guidance, and neurogenesis during development of the central nervous system. However, the molecular mechanisms regulating growth and morphology of these extended cells are unknown. We show that ABBA, a novel member of the IRSp53-MIM protein family, is enriched in different types of radial glia. ABBA binds ATP-actin monomers with high affinity and deforms PtdIns(4,5)P2-rich membranes in vitro through its WH2 and IM domains, respectively. In radial-glia-like C6-R cells, ABBA localises to the interface between the actin cytoskeleton and plasma membrane, and its depletion by RNAi led to defects in lamellipodial dynamics and process extension. Together, this study identifies ABBA as a novel regulator of actin and plasma membrane dynamics in radial glial cells, and provides evidence that membrane binding and deformation activity is critical for the cellular functions of IRSp53-MIM-ABBA family proteins

    Missing-in-metastasis and IRSp53 deform PI(4,5)P-2-rich membranes by an inverse BAR domain-like mechanism

    Get PDF
    The actin cytoskeleton plays a fundamental role in various motile and morphogenetic processes involving membrane dynamics. We show that actin-binding proteins MIM (missing-in-metastasis) and IRSp53 directly bind PI(4,5)P-2-rich membranes and deform them into tubular structures. This activity resides in the N-terminal IRSp53/MIM domain (IMD) of these proteins, which is structurally related to membrane-tubulating BAR (Bin/amphiphysin/Rvs) domains. We found that because of a difference in the geometry of the PI(4,5)P-2-binding site, IMDs induce a membrane curvature opposite that of BAR domains and deform membranes by binding to the interior of the tubule. This explains why IMD proteins induce plasma membrane protrusions rather than invaginations. We also provide evidence that the membrane-deforming activity of IMDs, instead of the previously proposed F-actin - bundling or GTPase-binding activities, is critical for the induction of the filopodia/microspikes in cultured mammalian cells. Together, these data reveal that interplay between actin dynamics and a novel membrane-deformation activity promotes cell motility and morphogenesis

    Molecular Mechanisms of Membrane Deformation by I-BAR Domain Proteins

    Get PDF
    Conclusions: These data define I-BAR domain as a functional member of the BAR domain superfamily and unravel the mechanisms by which I-BAR domains deform membranes to induce filopodia in cells. Furthermore, our work reveals unexpected divergence in the mechanisms by which evolutionarily distinct groups of I-BAR domains interact with PI(4,5)P(2)-rich membranes

    Mtss1 promotes cell-cell junction assembly and stability through the small GTPase Rac1

    Get PDF
    Cell-cell junctions are an integral part of epithelia and are often disrupted in cancer cells during epithelial-to-mesenchymal transition (EMT), which is a main driver of metastatic spread. We show here that Metastasis suppressor-1 (Mtss1; Missing in Metastasis, MIM), a member of the IMD-family of proteins, inhibits cell-cell junction disassembly in wound healing or HGF-induced scatter assays by enhancing cell-cell junction strength. Mtss1 not only makes cells more resistant to cell-cell junction disassembly, but also accelerates the kinetics of adherens junction assembly. Mtss1 drives enhanced junction formation specifically by elevating Rac-GTP. Lastly, we show that Mtss1 depletion reduces recruitment of F-actin at cell-cell junctions. We thus propose that Mtss1 promotes Rac1 activation and actin recruitment driving junction maintenance. We suggest that the observed loss of Mtss1 in cancers may compromise junction stability and thus promote EMT and metastasis

    Molecular Mechanisms of Membrane Deformation by I-BAR Domain Proteins

    Get PDF
    SummaryBackgroundGeneration of membrane curvature is critical for the formation of plasma membrane protrusions and invaginations and for shaping intracellular organelles. Among the central regulators of membrane dynamics are the BAR superfamily domains, which deform membranes into tubular structures. In contrast to the relatively well characterized BAR and F-BAR domains that promote the formation of plasma membrane invaginations, I-BAR domains induce plasma membrane protrusions through a poorly understood mechanism.ResultsWe show that I-BAR domains induce strong PI(4,5)P2 clustering upon membrane binding, bend the membrane through electrostatic interactions, and remain dynamically associated with the inner leaflet of membrane tubules. Thus, I-BAR domains induce the formation of dynamic membrane protrusions to the opposite direction than do BAR and F-BAR domains. Strikingly, comparison of different I-BAR domains revealed that they deform PI(4,5)P2-rich membranes through distinct mechanisms. IRSp53 and IRTKS I-BARs bind membranes mainly through electrostatic interactions, whereas MIM and ABBA I-BARs additionally insert an amphipathic helix into the membrane bilayer, resulting in larger tubule diameter in vitro and more efficient filopodia formation in vivo. Furthermore, FRAP analysis revealed that whereas the mammalian I-BAR domains display dynamic association with filopodia, the C. elegans I-BAR domain forms relatively stable structures inside the plasma membrane protrusions.ConclusionsThese data define I-BAR domain as a functional member of the BAR domain superfamily and unravel the mechanisms by which I-BAR domains deform membranes to induce filopodia in cells. Furthermore, our work reveals unexpected divergence in the mechanisms by which evolutionarily distinct groups of I-BAR domains interact with PI(4,5)P2-rich membranes

    Liposome Co-sedimentation and Co-flotation Assays to Study Lipid-Protein Interactions

    Get PDF
    A large proportion of proteins are expected to interact with cellular membranes to carry out their physiological functions in processes such as membrane transport, morphogenesis, cytoskeletal organization, and signal transduction. The recruitment of proteins at the membrane-cytoplasm interface and their activities are precisely regulated by phosphoinositides, which are negatively charged phospholipids found on the cytoplasmic leaflet of cellular membranes and play critical roles in membrane homeostasis and cellular signaling. Thus, it is important to reveal which proteins interact with phosphoinositides and to elucidate the underlying mechanisms. Here, we present two standard in vitro methods, liposome co-sedimentation and co-flotation assays, to study lipid-protein interactions. Liposomes can mimic various biological membranes in these assays because their lipid compositions and concentrations can be varied. Thus, in addition to mechanisms of lipid-protein interactions, these methods provide information on the possible specificities of proteins toward certain lipids such as specific phosphoinositide species and can hence shed light on the roles of membrane interactions on the functions of membrane-associated proteins.Peer reviewe

    Coordination of Membrane and Actin Cytoskeleton Dynamics during Filopodia Protrusion

    Get PDF
    Leading edge protrusion of migrating cells involves tightly coordinated changes in the plasma membrane and actin cytoskeleton. It remains unclear whether polymerizing actin filaments push and deform the membrane, or membrane deformation occurs independently and is subsequently stabilized by actin filaments. To address this question, we employed an ability of the membrane-binding I-BAR domain of IRSp53 to uncouple the membrane and actin dynamics and to induce filopodia in expressing cells. Using time-lapse imaging and electron microscopy of IRSp53-I-BAR-expressing B16F1 melanoma cells, we demonstrate that cells are not able to protrude or maintain durable long extensions without actin filaments in their interior, but I-BAR-dependent membrane deformation can create a small and transient space at filopodial tips that is subsequently filled with actin filaments. Moreover, the expressed I-BAR domain forms a submembranous coat that may structurally support these transient actin-free protrusions until they are further stabilized by the actin cytoskeleton. Actin filaments in the I-BAR-induced filopodia, in contrast to normal filopodia, do not have a uniform length, are less abundant, poorly bundled, and display erratic dynamics. Such unconventional structural organization and dynamics of actin in I-BAR-induced filopodia suggests that a typical bundle of parallel actin filaments is not necessary for generation and mechanical support of the highly asymmetric filopodial geometry. Together, our data suggest that actin filaments may not directly drive the protrusion, but only stabilize the space generated by the membrane deformation; yet, such stabilization is necessary for efficient protrusion

    Murine Missing in Metastasis (MIM) Mediates Cell Polarity and Regulates the Motility Response to Growth Factors

    Get PDF
    Missing in metastasis (MIM) is a member of the inverse BAR-domain protein family, and in vitro studies have implied MIM plays a role in deforming membrane curvature into filopodia-like protrusions and cell dynamics. Yet, the physiological role of the endogenous MIM in mammalian cells remains undefined.We have examined mouse embryonic fibroblasts (MEFs) derived from mice in which the MIM locus was targeted by a gene trapping vector. MIM(-/-) MEFs showed a less polarized architecture characterized by smooth edges and fewer cell protrusions as compared to wild type cells, although the formation of filopodia-like microprotrusions appeared to be normal. Immunofluorescent staining further revealed that MIM(-/-) cells were partially impaired in the assembly of stress fibers and focal adhesions but were enriched with transverse actin filaments at the periphery. Poor assembly of stress fibers was apparently correlated with attenuation of the activity of Rho GTPases and partially relieved upon overexpressing of Myc-RhoA(Q63L), a constitutively activated RhoA mutant. MIM(-/-) cells were also spread less effectively than wild type cells during attachment to dishes and substratum. Upon treatment with PDGF MIM(-/-) cells developed more prominent dorsal ruffles along with increased Rac1 activity. Compared to wild type cells, MIM(-/-) cells had a slower motility in the presence of a low percentage of serum-containing medium but migrated normally upon adding growth factors such as 10% serum, PDGF or EGF. MIM(-/-) cells were also partially impaired in the internalization of transferrin, fluorescent dyes, foreign DNAs and PDGF receptor alpha. On the other hand, the level of tyrosine phosphorylation of PDGF receptors was more elevated in MIM depleted cells than wild type cells upon PDGF treatment.Our data suggests that endogenous MIM protein regulates globally the cell architecture and endocytosis that ultimately influence a variety of cellular behaviors, including cell polarity, motility, receptor signaling and membrane ruffling
    corecore