1,135 research outputs found
Searching for Planets in the Hyades II: Some Implications of Stellar Magnetic Activity
The Hyades constitute a homogeneous sample of stars ideal for investigating
the dependence of planet formation on the mass of the central star. Due to
their youth, Hyades members are much more chromospherically active than stars
traditionally surveyed for planets using high precision radial velocity (RV)
techniques. Therefore, we have conducted a detailed investigation of whether
magnetic activity of our Hyades target stars will interfere with our ability to
make precise RV searches for substellar companions. We measure chromospheric
activity (which we take as a proxy for magnetic activity) by computing the
equivalent of the R'HK activity index from the Ca II K line. is not
constant in the Hyades: we confirm that it decreases with increasing
temperature in the F stars, and also find it decreases for stars cooler than
mid-K. We examine correlations between simultaneously measured R'HK and RV
using both a classical statistical test and a Bayesian odds ratio test. We find
that there is a significant correlation between R'HK and the RV in only 5 of
the 82 stars in this sample. Thus, simple Rprime HK-RV correlations will
generally not be effective in correcting the measured RV values for the effects
of magnetic activity in the Hyades. We argue that this implies long timescale
activity variations (of order a few years; i.e., magnetic cycles or growth and
decay of plage regions) will not significantly hinder our search for planets in
the Hyades if the stars are closely monitored for chromospheric activity. The
trends in the RV scatter (sigma'_v) with , vsini, and P_rot for our stars
is generally consistent with those found in field stars in the Lick planet
search data, with the notable exception of a shallower dependence of sigma'_v
on for F stars.Comment: 15 pages, 7 figures, 3 tables; To appear in the July 2002 issue of
The Astronomical Journa
Planet-Induced Emission Enhancements in HD 179949: Results from McDonald Observations
We monitored the Ca II H and K lines of HD 179949, a notable star in the
southern hemisphere, to observe and confirm previously identified planet
induced emission (PIE) as an effect of star-planet interaction. We obtained
high resolution spectra (R ~ 53,000) with a signal-to-noise ratio S/N >~ 50 in
the Ca II H and K cores during 10 nights of observation at the McDonald
Observatory. Wide band echelle spectra were taken using the 2.7 m telescope.
Detailed statistical analysis of Ca II K revealed fluctuations in the Ca II K
core attributable to planet induced chromospheric emission. This result is
consistent with previous studies by Shkolnik et al. (2003). Additionally, we
were able to confirm the reality and temporal evolution of the phase shift of
the maximum of star-planet interaction previously found. However, no
identifiable fluctuations were detected in the Ca II H core. The Al I lambda
3944 A line was also monitored to gauge if the expected activity enhancements
are confined to the chromospheric layer. Our observations revealed some
variability, which is apparently unassociated with planet induced activity.Comment: 11 pages, 11 figures, 5 tables; Publications of the Astronomical
Society of Australia (in press
The supercluster--void network III. The correlation function as a geometrical statistic
We investigate properties of the correlation function of clusters of galaxies
using geometrical models. On small scales the correlation function depends on
the shape and the size of superclusters. On large scales it describes the
geometry of the distribution of superclusters. If superclusters are distributed
randomly then the correlation function on large scales is featureless. If
superclusters and voids have a tendency to form a regular lattice then the
correlation function on large scales has quasi-regularly spaced maxima and
minima of decaying amplitude; i.e., it is oscillating. The period of
oscillations is equal to the step size of the grid of the lattice.
We calculate the power spectrum for our models and compare the geometrical
information of the correlation function with other statistics. We find that
geometric properties (the regularity of the distribution of clusters on large
scales) are better quantified by the correlation function. We also analyse
errors in the correlation function and the power spectrum by generating random
realizations of models and finding the scatter of these realizations.Comment: MNRAS LaTex style, 12 pages, 7 PostScript figures embedded, accepted
by MNRA
Search for exoplanets with the radial-velocity technique: quantitative diagnostics of stellar activity
Aims: Stellar activity may complicate the analysis of high-precision
radial-velocity spectroscopic data when looking for exoplanets signatures. We
aim at quantifying the impact of stellar spots on stars with various spectral
types and rotational velocities and comparing the simulations with data
obtained with the HARPS spectrograph. Methods: We have developed detailed
simulations of stellar spots and estimated their effects on a number of
observables commonly used in the analysis of radial-velocity data when looking
for extrasolar planets, such as radial-velocity curves, cross-correlation
functions, bisector spans and photometric curves. The computed stellar spectra
are then analyzed in the same way as when searching for exoplanets. Results: 1)
A first grid of simulation results is built for F-K type stars, with different
stellar and spot properties. 2) It is shown quantitatively that star spots with
typical sizes of 1% can mimic both radial-velocity curves and the bisector
behavior of short-period giant planets around G-K type stars with a vsini lower
than the spectrograph resolution. For stars with intermediate vsini, smaller
spots may produce similar features. In these cases, additional observables
(e.g., photometry, spectroscopic diagnostics) are mandatory to confirm the
presence of short-period planets. We show that, in some cases, photometric
variations may not be enough to clearly rule out spots as explanations of the
observed radial-velocity variations. This is particularly important when
searching for super-Earth planets. 3) It is also stressed that quantitative
values obtained for radial-velocity and bisector span amplitudes depend
strongly on the detailed star properties, on the spectrograph used, on the set
of lines used, and on the way they are measured.Comment: 12 pages, 16 figures, accepted for publication in A&
An integrative approach based on probabilistic modelling and statistical inference for morpho-statistical characterization of astronomical data
This paper describes several applications in astronomy and cosmology that are
addressed using probabilistic modelling and statistical inference
Confirmation of the Planet Hypothesis for the Long-period Radial Velocity Variations of Beta Geminorum
We present precise stellar radial velocity measurements for the K giant star
Beta Gem spanning over 25 years. These data show that the long period low
amplitude radial velocity variations found by Hatzes & Cochran (1993) are
long-lived and coherent. An examination of the Ca II K emission, spectral line
shapes from high resolution data (R = 210,000), and Hipparcos photometry show
no significant variations of these quantities with the RV period. These data
confirm the planetary companion hypothesis suggested by Hatzes & Cochran
(1993). An orbital solution assuming a stellar mass of 1.7 M_sun yields a
period, P = 589.6 days, a minimum mass of 2.3 M_Jupiter, and a semi-major axis,
and a = 1.6 AU. The orbit is nearly circular (e = 0.02). Beta Gem is the
seventh intermediate mass star shown to host a sub-stellar companion and
suggests that planet-formation around stars much more massive than the sun may
common.Comment: 10 pages, 9 figures, Astronomy and Astrophysics, in pres
The Signature of Primordial Grain Growth in the Polarized Light of the AU Mic Debris Disk
We have used the Hubble Space Telescope/ACS coronagraph to make polarization
maps of the AU Mic debris disk. The fractional linear polarization rises
monotonically from about 0.05 to 0.4 between 20 and 80 AU. The polarization is
perpendicular to the disk, indicating that the scattered light originates from
micron sized grains in an optically thin disk. Disk models, which
simultaneously fit the surface brightness and polarization, show that the inner
disk (< 40-50 AU) is depleted of micron-sized dust by a factor of more than
300, which means that the disk is collision dominated. The grains have high
maximum linear polarization and strong forward scattering. Spherical grains
composed of conventional materials cannot reproduce these optical properties. A
Mie/Maxwell-Garnett analysis implicates highly porous (91-94%) particles. In
the inner Solar System, porous particles form in cometary dust, where the
sublimation of ices leaves a "bird's nest" of refractory organic and silicate
material. In AU Mic, the grain porosity may be primordial, because the dust
"birth ring" lies beyond the ice sublimation point. The observed porosities
span the range of values implied by laboratory studies of particle coagulation
by ballistic cluster-cluster aggregation. To avoid compactification, the upper
size limit for the parent bodies is in the decimeter range, in agreement with
theoretical predictions based on collisional lifetime arguments. Consequently,
AU Mic may exhibit the signature of the primordial agglomeration process
whereby interstellar grains first assembled to form macroscopic objects.Comment: 12 pages, 8 figures, ApJ, in pres
A Spitzer/IRAC Search for Substellar Companions of the Debris Disk Star epsilon Eridani
We have used the InfraRed Array Camera (IRAC) onboard the Spitzer Space
telescope to search for low mass companions of the nearby debris disk star
epsilon Eridani. The star was observed in two epochs 39 days apart, with
different focal plane rotation to allow the subtraction of the instrumental
Point Spread Function, achieving a maximum sensitivity of 0.01 MJy/sr at 3.6
and 4.5 um, and 0.05 MJy/sr at 5.8 and 8.0 um. This sensitivity is not
sufficient to directly detect scattered or thermal radiation from the epsilon
Eridani debris disk. It is however sufficient to allow the detection of Jovian
planets with mass as low as 1 MJ in the IRAC 4.5 um band. In this band, we
detected over 460 sources within the 5.70 arcmin field of view of our images.
To test if any of these sources could be a low mass companion to epsilon
Eridani, we have compared their colors and magnitudes with models and
photometry of low mass objects. Of the sources detected in at least two IRAC
bands, none fall into the range of mid-IR color and luminosity expected for
cool, 1 Gyr substellar and planetary mass companions of epsilon Eridani, as
determined by both models and observations of field M, L and T dwarf. We
identify three new sources which have detections at 4.5 um only, the lower
limit placed on their [3.6]-[4.5] color consistent with models of planetary
mass objects. Their nature cannot be established with the currently available
data and a new observation at a later epoch will be needed to measure their
proper motion, in order to determine if they are physically associated to
epsilon Eridani.Comment: 36 pages, to be published on The Astrophysical Journal, vol. 647,
August 200
Ages for illustrative field stars using gyrochronology: viability, limitations and errors
We here develop an improved way of using a rotating star as a clock, set it
using the Sun, and demonstrate that it keeps time well. This technique, called
gyrochronology, permits the derivation of ages for solar- and late-type main
sequence stars using only their rotation periods and colors. The technique is
clarified and developed here, and used to derive ages for illustrative groups
of nearby, late-type field stars with measured rotation periods. We first
demonstrate the reality of the interface sequence, the unifying feature of the
rotational observations of cluster and field stars that makes the technique
possible, and extends it beyond the proposal of Skumanich by specifying the
mass dependence of rotation for these stars. We delineate which stars it cannot
currently be used on. We then calibrate the age dependence using the Sun. The
errors are propagated to understand their dependence on color and period.
Representative age errors associated with the technique are estimated at ~15%
(plus possible systematic errors) for late-F, G, K, & early-M stars. Ages
derived via gyrochronology for the Mt. Wilson stars are shown to be in good
agreement with chromospheric ages for all but the bluest stars, and probably
superior. Gyro ages are then calculated for each of the active main sequence
field stars studied by Strassmeier and collaborators where other ages are not
available. These are shown to be mostly younger than 1Gyr, with a median age of
365Myr. The sample of single, late-type main sequence field stars assembled by
Pizzolato and collaborators is then assessed, and shown to have gyro ages
ranging from under 100Myr to several Gyr, and a median age of 1.2Gyr. Finally,
we demonstrate that the individual components of the three wide binaries
XiBooAB, 61CygAB, & AlphaCenAB yield substantially the same gyro ages.Comment: 58 pages, 18 color figures, accepted for publication in The
Astrophysical Journal; Age uncertainties slightly modified upon correcting an
algebraic error in Section
The periodic variations of a white-light flare observed with ULTRACAM
High time resolution observations of a white-light flare on the active star EQ PegB show evidence of intensity variations with a period of ≈10 s. The period drifts to longer values during the decay phase of the flare. If the oscillation is interpreted as an impulsively-excited,
standing-acoustic wave in a flare loop, the period implies a loop length of ≈3.4 Mm and ≈6.8 Mm for the case of the fundamental mode and the second harmonic, respectively. However, the small loop lengths imply a very high modulation depth making the acoustic interpretation unlikely. A more realistic interpretation may be that of a fast-MHD wave, with the modulation of the emission being
due to the magnetic field. Alternatively, the variations could be due to a series of reconnection events. The periodic signature may then arise as a result of the lateral separation of individual flare loops or current sheets with oscillatory dynamics (i.e., periodic reconnection)
- …