139 research outputs found

    Structure of Thermoreversible Poly(vinyl alcohol) Cryo-Hydrogels as studied by Proton Low Field NMR Spectroscopy

    Get PDF
    The network structure of Poly(vinyl alcohol) (PVA) hydrogels obtained by freezing-thawing cycles was investigated by solid state 1H low field NMR spectroscopy. By application of multiple-quantum NMR experiments, we obtain information about the segmental order parameter, which is directly related to the restrictions to chain motion (crosslinks) formed upon gelation. These measurements indicate that the network mesh size, as well as the relative amount of non-elastic defects (i.e. non-crosslinked chains, dangling chains, loops) decreases with the number of freezing-thawing cycles, but it is independent of the polymer concentration. The formation of the PVA network is accompanied by an increasing fraction of polymer with fast magnetization decay (∼20μs). The quantitative study of this rigid phase with a specific refocusing pulse sequence shows that it is composed of a primary crystalline polymer phase (around 5%), which constitutes the main support of the network structure and determines the mesh size, and a secondary population of more imperfect crystallites, which increase the number of elastic chain segments in the polymer gel but does not affect the average network mesh size appreciably. Correspondingly, progressive melting of the secondary crystallites with increasing temperature does not affect the network mesh size but only the amount of network defects, and melting of the main PVA crystallites at around 80 ºC leads to destruction of the network gel and formation of an isotropic PVA solution.Peer reviewe

    Uncertainties in the determination of cross-link density by equilibrium swelling experiments in natural rubber

    Get PDF
    ABSTRACT: Equilibrium swelling is a feasible and simple experiment to determine the cross-link density of networks. It is the most popular and useful approach; however, in most of the cases, the given values are highly uncertain if not erroneous. The description of the complex thermodynamics of swollen polymer networks is usually based on the Flory-Rehner model. However, experimental evidence has shown that both the mixing term described by the Flory-Huggins expression and the elastic component derived from the affine model are only approximations that fail in the description and prediction of the rubber network behavior. This means that the Flory-Rehner treatment can only give a qualitative evaluation of cross-link density because of its strong dependence on the thermodynamic model. In this work, the uncertainties in the determination of the cross-link density in rubber materials by swelling experiments based on this model are reviewed. The implications and the validity of some of the used approximations as well as their influence in the relationship of the cross-link densities derived from swelling experiments are discussed. Importantly, swelling results are compared with results of a completely independent determination of the cross-link density by proton multiple-quantum NMR, and the correlation observed between the two methods can help to validate the thermodynamic model

    Diffusion in Model Networks as Studied by NMR and Fluorescence Correlation Spectroscopy

    Get PDF
    We have studied the diffusion of small solvent molecules (octane) and larger hydrophobic dye probes in octane-swollen poly(dimethyl siloxane) linear-chain solutions and end-linked model networks, using pulsed-gradient nuclear magnetic resonance (NMR) and fluorescence correlation spectroscopy (FCS), respectively, focusing on diffusion in the bulk polymer up to the equilibrium degree of swelling of the networks, that is, 4.8 at most. The combination of these results allows for new conclusions on the feasibility of different theories describing probe diffusion in concentrated polymer systems. While octane diffusion shows no cross-link dependence, the larger dyes are increasingly restricted by fixed chemical meshes. The simple Fujita free-volume theory proved most feasible to describe probe diffusion in linear long-chain solutions with realistic parameters, while better fits were obtained assuming a stretched exponential dependence on concentration. Importantly, we have analyzed the cross-link specific effect on probe diffusion independently of any specific model by comparing the best-fit interpolation of the solution data with the diffusion in the networks. The most reasonable description is obtained by assuming that the cross-link effect is additive in the effective friction coefficient of the probes. The concentration dependences as well as the data compared at the equilibrium degrees of swelling indicate that swelling heterogeneities and diffusant shape have a substantial influence on small-molecule diffusion in networks.

    Solid-State NMR of Polymers

    No full text
    corecore