4 research outputs found

    UV Dose Governs UV-Polymerized Polyacrylamide Hydrogel Modulus

    No full text
    Polyacrylamide (PAA) hydrogels have become a widely used tool whose easily tunable mechanical properties, biocompatibility, thermostability, and chemical inertness make them invaluable in many biological applications, such as cell mechanosensitivity studies. Currently, preparation of PAA gels involves mixtures of acrylamide, bisacrylamide, a source of free radicals, and a chemical stabilizer. This method, while generally well accepted, has its drawbacks: long polymerization times, unstable and toxic reagents, and tedious preparation. Alternatively, PAA gels could be made by free radical polymerization (FRP) using ultraviolet (UV) photopolymerization, a method which is quicker, less tedious, and less toxic. Here, we describe a simple strategy based on total UV energy for determining the optimal UV crosslinking conditions that lead to optimal hydrogel modulus

    Data from: Mechanical factors direct mouse aortic remodeling during early maturation

    No full text
    Numerous diseases have been linked to genetic mutations that lead to reduced amounts or disorganization of arterial elastic fibres. Previous work has shown that mice with reduced amounts of elastin (Eln+/−) are able to live a normal lifespan through cardiovascular adaptations, including changes in haemodynamic stresses, arterial geometry and arterial wall mechanics. It is not known if the timeline and presence of these adaptations are consistent in other mouse models of elastic fibre disease, such as those caused by the absence of fibulin-5 expression (Fbln5−/−). Adult Fbln5−/− mice have disorganized elastic fibres, decreased arterial compliance and high blood pressure. We examined mechanical behaviour of the aorta in Fbln5−/− mice through early maturation when the elastic fibres are being assembled. We found that the physiologic circumferential stretch, stress and modulus of Fbln5−/− aorta are maintained near wild-type levels. Constitutive modelling suggests that elastin contributions to the total stress are decreased, whereas collagen contributions are increased. Understanding how collagen fibre structure and mechanics compensate for defective elastic fibres to meet the mechanical requirements of the maturing aorta may help to better understand arterial remodelling in human elastinopathies

    Data for fitting constitutive model

    No full text
    Pressure, diameter, force, and axial stretch data combined for six loading protocols and used to fit the constitutive model in the manuscript. Unloaded dimensions for each aorta are also included
    corecore