128 research outputs found
A ray-trace analysis of X-ray multilayer Laue lenses for nanometer focusing
Thick diffractive optical elements offer a promising way to achieve focusing
or imaging at a resolution approaching 1 nm for X-ray wavelengths shorter than
about 0.1 nm. Efficient focusing requires that these are fabricated with
structures that vary in period and orientation so that rays obey Bragg's law
over the entire lens aperture and give rise to constructive interference at the
focus. Here the analysis method of ray-tracing of thick diffractive optical
elements is applied to such lenses to optimise their designs and to investigate
their operating and manufacturing tolerances. Expressions are provided of the
fourth-order series expansions of the wavefront aberrations and transmissions
of both axi-symmetric lenses and pairs of crossed lenses that each focuses in
only one dimension like a cylindrical lens. We find that aplanatic zone-plate
designs, whereby aberrations are corrected over a large field of view, can be
achieved by axi-symmetric lenses but not the crossed lenses. We investigate the
performance of 1 nm-resolution lenses with focal lengths of about 1 mm and show
their fields of view are mainly limited by the acceptance angle of Bragg
diffraction, and that aberrations can limit the performance of lenses with
longer focal lengths. We apply the ray-tracing formalism for a tolerancing
analysis of imperfect lenses and examine some strategies for the correction of
their aberrations.Comment: 44 pages, 15 figure
Spin precession mapping at ferromagnetic resonance via nuclear resonant scattering
We probe the spin dynamics in a thin magnetic film at ferromagnetic resonance
by nuclear resonant scattering of synchrotron radiation at the 14.4 keV
resonance of Fe. The precession of the magnetization leads to an
apparent reduction of the magnetic hyperfine field acting at the Fe
nuclei. The spin dynamics is described in a stochastic relaxation model adapted
to the ferromagnetic resonance theory by Smit and Beljers to model the decay of
the excited nuclear state. From the fits of the measured data the shape of the
precession cone of the spins is determined. Our results open a new perspective
to determine magnetization dynamics in layered structures with very high depth
resolution by employing ultrathin isotopic probe layers
Femtosecond x-ray diffraction from an aerosolized beam of protein nanocrystals
We demonstrate near-atomic-resolution Bragg diffraction from aerosolized
single granulovirus crystals using an x-ray free-electron laser. The form of
the aerosol injector is nearly identical to conventional liquid-microjet
nozzles, but the x-ray-scattering background is reduced by several orders of
magnitude by the use of helium carrier gas rather than liquid. This approach
provides a route to study the weak diffuse or lattice-transform signal arising
from small crystals. The high speed of the particles is particularly well
suited to upcoming MHz-repetition-rate x-ray free-electron lasers
Rapid sample delivery for megahertz serial crystallography at X-ray FELs
Liquid microjets are a common means of delivering protein crystals to the focus of X-ray free-electron lasers (FELs) for serial femtosecond crystallography measurements. The high X-ray intensity in the focus initiates an explosion of the microjet and sample. With the advent of X-ray FELs with megahertz rates, the typical velocities of these jets must be increased significantly in order to replenish the damaged material in time for the subsequent measurement with the next X-ray pulse. This work reports the results of a megahertz serial diffraction experiment at the FLASH FEL facility using 4.3 nm radiation. The operation of gas-dynamic nozzles that produce liquid microjets with velocities greater than 80 m s-1 was demonstrated. Furthermore, this article provides optical images of X-ray-induced explosions together with Bragg diffraction from protein microcrystals exposed to trains of X-ray pulses repeating at rates of up to 4.5 MHz. The results indicate the feasibility for megahertz serial crystallography measurements with hard X-rays and give guidance for the design of such experiments
Segmented flow generator for serial crystallography at the European X-ray free electron laser
Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported
Enzyme intermediates captured on the fly by mix-and-inject serial crystallography
Background
Ever since the first atomic structure of an enzyme was solved, the discovery of the mechanism and dynamics of reactions catalyzed by biomolecules has been the key goal for the understanding of the molecular processes that drive life on earth. Despite a large number of successful methods for trapping reaction intermediates, the direct observation of an ongoing reaction has been possible only in rare and exceptional cases.
Results
Here, we demonstrate a general method for capturing enzyme catalysis in action by mix-and-inject serial crystallography (MISC). Specifically, we follow the catalytic reaction of the Mycobacterium tuberculosis β-lactamase with the third-generation antibiotic ceftriaxone by time-resolved serial femtosecond crystallography. The results reveal, in near atomic detail, antibiotic cleavage and inactivation from 30 ms to 2s.
Conclusions
MISC is a versatile and generally applicable method to investigate reactions of biological macromolecules, some of which are of immense biological significance and might be, in addition, important targets for structure-based drug design. With megahertz X-ray pulse rates expected at the Linac Coherent Light Source II and the European X-ray free-electron laser, multiple, finely spaced time delays can be collected rapidly, allowing a comprehensive description of biomolecular reactions in terms of structure and kinetics from the same set of X-ray data.This work was supported by the National Science Foundation (NSF)-Science and Technology Center (STC) BioXFEL through award STC-1231306, and in part by the US Department of Energy, Office of Science, Basic Energy Sciences under contract DE-SC0002164 (to A.O., algorithm design and development) and by the NSF under contract number 1551489 (to A.O., underlying analytical models). Portions of this research were performed at the Linac Coherent Light Source (LCLS). Use of the LCLS, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Basic Energy Sciences under contract DE-AC02-76SF00515. This material is based upon work supported by the NSF Graduate Research Fellowship Program to J.L.O. under grant no. 1450681. The work was also supported by funds from the National Institutes of Health grants R01 GM117342-01 and R01 GM095583, by funds from the Biodesign Center for Applied Structural Discovery at Arizona State University, and the US Department of Energy through Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Part of this work was also supported by program-oriented funds of the Helmholtz Association
Применение программного продукта «Яндекс.Сервер» для организации поиска в электронном каталоге библиотеки
The huge amounts of information accumulated by libraries in recent years put before developers a problem of the organization of fast and qualitative search which decision is possible with the use of modern search tools of Web-technology. The author examines one of these tools the software product “Yandex. Server”, allowing to organize optimum search in the electronic library catalog. The software product “Yandex. Server” gives a chance to carry out optimum search taking into account morphology of Russian and English languages, as well as the various logical conditions that provides effective and flexible search in the electronic library catalog.Накопленные библиотеками за последние годы огромные массивы информации ставят перед разработчиками задачу организации быстрого и качественного поиска, решение которой возможно с использованием современных поисковых инструментов веб-технологии. Автор рассматривает один из таких инструментов - программный продукт «Яндекс. Сервер», позволяющий организовать оптимальный поиск в электронном каталоге библиотеки с учетом морфологии русского и английского языков, а также различных логических условий
On the Properties of WC/SiC Multilayers
A study of the materials properties of WC/SiC multilayer coatings is presented. We investigated the dependence of interface and surface roughness, intrinsic stress, microstructure, chemical composition, and stoichiometry as a function of multilayer period and in some cases compared these to W/SiC multilayer systems. The WC/SiC material pair forms multilayers with extremely smooth and sharp interfaces and both materials remain amorphous over a wide range of thicknesses. These properties are desirable for multilayer-based high-resolution diffractive x-ray optics, such as multilayer Laue lenses (MLLs), which require very thick films in which the layer spacing varies considerably. Thermal and structural stability studies show that WC/SiC multilayers have exceptional thermal stability, making this an extremely robust and favorable material pair for MLLs and other multilayer-based X-ray optical elements
- …