11 research outputs found

    FE modelling strategies of weld repair in pre-stressed thin components

    Get PDF
    Two computational procedures have been developed in the commercial finite element (FE) software codes Sysweld and Abaqus to analyse and predict the residual stress state after the repair of small weld defects in thin structural components. The numerical models allow the effects of the repair to be studied when a pre-existing residual stress field is present in the fabricated part and cannot be relieved by a thermal treatment. In this work the modelling strategies are presented and tested by simulating a repair of longitudinal welds in thin sheets of Inconel 718 (IN718). Although the numerical strategies in the two codes are intrinsically different, the results show a significant agreement, predicting a notable effect imposed by the initial residual stress

    Residual stress analysis and finite element modelling of repair-welded titanium sheets

    Get PDF
    An innovative FE modelling approach has been tested to investigate the effects of weld repair thin sheets of titanium alloy, taking into account pre-existing stress field in the components. In the case study analysed, the residual stress fields due to the original welds are introduced by means of a preliminary sequentially-coupled thermo-mechanical analysis and considered as pre-existing stress in the sheets for the subsequent weld simulation. Comparisons are presented between residual stress predictions and experimental measurements available from the literature with the aim of validating the numerical procedure. As a destructive sectioning technique was used in the reference experimental measurements, an investigation is also presented on the use of the element deactivation strategy when adopted to simulate material removal. Although the numerical tool is an approximate approach to simulate the actual material removal, the strategy appears to compute a physical strain relaxation and stress redistribution in the remaining part of the component. The weld repair modelling strategy and the element deactivation tool adopted to simulate the residual stress measurement technique are shown to predict residual stress trends which are very well correlated with experimental findings from the literature

    Hybrid laser manufacturing

    No full text
    For some materials, application of laser-based additive manufacturing is limited due to cracking during solification by rapid cooling. Hybrid laser manufacturing is meant to include additional heat sources as well as process technologies to overcome current limitations in laser-based AM and to use the synergistic effects of both heat sources. The additional energy sources are often cheaper than laser sources, but they are less precise. However, additional equipment increases the costs of the process and the final AM part. Nevertheless, hybrid manufacturing can substantially widen the range of materials suitable for AM processing
    corecore