12 research outputs found

    The placebo effect in the motor domain is differently modulated by the external and internal focus of attention

    Get PDF
    Among the cognitive strategies that can facilitate motor performance in sport and physical practice, a prominent role is played by the direction of the focus of attention and the placebo effect. Consistent evidence converges in indicating that these two cognitive functions can influence the motor outcome, although no study up-to-now tried to study them together in the motor domain. In this explorative study, we combine for the first time these approaches, by applying a placebo procedure to increase force and by manipulating the focus of attention with explicit verbal instructions. Sixty healthy volunteers were asked to perform abduction movements with the index finger as strongly as possible against a piston and attention could be directed either toward the movements of the finger (internal focus, IF) or toward the movements of the piston (external focus, EF). Participants were randomized in 4 groups: two groups underwent a placebo procedure (Placebo-IF and Placebo-EF), in which an inert treatment was applied on the finger with verbal information on its positive effects on force; two groups underwent a control procedure (Control-IF and Control-EF), in which the same treatment was applied with overt information about its inefficacy. The placebo groups were conditioned about the effects of the treatment with a surreptitious amplification of a visual feedback signalling the level of force. During the whole procedure, we recorded actual force, subjective variables and electromyography from the hand muscles. The Placebo-IF group had higher force levels after the procedure than before, whereas the Placebo-EF group had a decrease of force. Electromyography showed that the Placebo-IF group increased the muscle units recruitment without changing the firing rate. These findings show for the first time that the placebo effect in motor performance can be influenced by the subject\u2019s attentional focus, being enhanced with the internal focus of attention

    The full transcription map of mouse papillomavirus type 1 (MmuPV1) in mouse wart tissues.

    No full text
    Mouse papillomavirus type 1 (MmuPV1) provides, for the first time, the opportunity to study infection and pathogenesis of papillomaviruses in the context of laboratory mice. In this report, we define the transcriptome of MmuPV1 genome present in papillomas arising in experimentally infected mice using a combination of RNA-seq, PacBio Iso-seq, 5' RACE, 3' RACE, primer-walking RT-PCR, RNase protection, Northern blot and in situ hybridization analyses. We demonstrate that the MmuPV1 genome is transcribed unidirectionally from five major promoters (P) or transcription start sites (TSS) and polyadenylates its transcripts at two major polyadenylation (pA) sites. We designate the P7503, P360 and P859 as "early" promoters because they give rise to transcripts mostly utilizing the polyadenylation signal at nt 3844 and therefore can only encode early genes, and P7107 and P533 as "late" promoters because they give rise to transcripts utilizing polyadenylation signals at either nt 3844 or nt 7047, the latter being able to encode late, capsid proteins. MmuPV1 genome contains five splice donor sites and three acceptor sites that produce thirty-six RNA isoforms deduced to express seven predicted early gene products (E6, E7, E1, E1^M1, E1^M2, E2 and E8^E2) and three predicted late gene products (E1^E4, L2 and L1). The majority of the viral early transcripts are spliced once from nt 757 to 3139, while viral late transcripts, which are predicted to encode L1, are spliced twice, first from nt 7243 to either nt 3139 (P7107) or nt 757 to 3139 (P533) and second from nt 3431 to nt 5372. Thirteen of these viral transcripts were detectable by Northern blot analysis, with the P533-derived late E1^E4 transcripts being the most abundant. The late transcripts could be detected in highly differentiated keratinocytes of MmuPV1-infected tissues as early as ten days after MmuPV1 inoculation and correlated with detection of L1 protein and viral DNA amplification. In mature warts, detection of L1 was also found in more poorly differentiated cells, as previously reported. Subclinical infections were also observed. The comprehensive transcription map of MmuPV1 generated in this study provides further evidence that MmuPV1 is similar to high-risk cutaneous beta human papillomaviruses. The knowledge revealed will facilitate the use of MmuPV1 as an animal virus model for understanding of human papillomavirus gene expression, pathogenesis and immunology

    Electrospun ECM macromolecules as biomimetic scaffold for regenerative medicine: challenges for preserving conformation and bioactivity

    No full text

    Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci.

    No full text
    corecore