76 research outputs found
Exploring shear alignment of concentrated wormlike micelles using rheology coupled with small-angle neutron scattering
Wormlike micelles (WLMs) are vital components of many consumer products and industrial fluids, adding a shear-dependent viscous texture through their entanglement in solutions. It is now well accepted from experiments such as coupling rheology and scattering that, similar to many polymer solutions and dispersions of highly anisotropic particles, WLM behavior during shear arises from the alignment of the "worms"with the shear field, resulting in ordering that is rapidly lost in the cessation of shear. Most studies of such systems have been limited to dilute systems that are far below concentrations used industrially and commercially, due to the complexity of analyzing shear-induced many-body effects in high volume fraction dispersions. Here, we explore the shear alignment of concentrated WLM solutions comprising sodium laureth sulfate and cocamidopropyl betaine in 0.38 M aqueous sodium chloride. By analyzing only scattering data at high values of the scattering vector (i.e., correlations at short length scales that are dominant in such concentrated systems), we explore whether useful information can be obtained by naïvely approximating the WLMs as an ensemble of unconnected short rods representing sections of the worms. By taking this reductionist approach to analyzing the obtained two-dimensional scattering patterns from these systems under shear, we find that in this regime, such concentrated worms can be approximated as cylinders that become more aligned with the direction of shear as volume fraction and shear rate increase
Gene silencing in tick cell lines using small interfering or long double-stranded RNA
Gene silencing by RNA interference (RNAi) is an important research tool in many areas of biology. To effectively harness the power of this technique in order to explore tick functional genomics and tick-microorganism interactions, optimised parameters for RNAi-mediated gene silencing in tick cells need to be established. Ten cell lines from four economically important ixodid tick genera (Amblyomma, Hyalomma, Ixodes and Rhipicephalus including the sub-species Boophilus) were used to examine key parameters including small interfering RNA (siRNA), double stranded RNA (dsRNA), transfection reagent and incubation time for silencing virus reporter and endogenous tick genes. Transfection reagents were essential for the uptake of siRNA whereas long dsRNA alone was taken up by most tick cell lines. Significant virus reporter protein knockdown was achieved using either siRNA or dsRNA in all the cell lines tested. Optimum conditions varied according to the cell line. Consistency between replicates and duration of incubation with dsRNA were addressed for two Ixodes scapularis cell lines; IDE8 supported more consistent and effective silencing of the endogenous gene subolesin than ISE6, and highly significant knockdown of the endogenous gene 2I1F6 in IDE8 cells was achieved within 48 h incubation with dsRNA. In summary, this study shows that gene silencing by RNAi in tick cell lines is generally more efficient with dsRNA than with siRNA but results vary between cell lines and optimal parameters need to be determined for each experimental system
Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions
Background: Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface. Results: We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin. Conclusions: Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils
Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology
Modular and orthogonal genetic logic gates are essential for building robust biologically based digital devices to customize cell signalling in synthetic biology. Here we constructed an orthogonal AND gate in Escherichia coli using a novel hetero-regulation module from Pseudomonas syringae. The device comprises two co-activating genes hrpR and hrpS controlled by separate promoter inputs, and a σ54-dependent hrpL promoter driving the output. The hrpL promoter is activated only when both genes are expressed, generating digital-like AND integration behaviour. The AND gate is demonstrated to be modular by applying new regulated promoters to the inputs, and connecting the output to a NOT gate module to produce a combinatorial NAND gate. The circuits were assembled using a parts-based engineering approach of quantitative characterization, modelling, followed by construction and testing. The results show that new genetic logic devices can be engineered predictably from novel native orthogonal biological control elements using quantitatively in-context characterized parts
Viral Hepatitis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65791/1/j.1365-4362.1981.tb00836.x.pd
Role of DNA methylation in head and neck cancer
Head and neck cancer (HNC) is a heterogenous and complex entity including diverse anatomical sites and a variety of tumor types displaying unique characteristics and different etilogies. Both environmental and genetic factors play a role in the development of the disease, but the underlying mechanism is still far from clear. Previous studies suggest that alterations in the genes acting in cellular signal pathways may contribute to head and neck carcinogenesis. In cancer, DNA methylation patterns display specific aberrations even in the early and precancerous stages and may confer susceptibility to further genetic or epigenetic changes. Silencing of the genes by hypermethylation or induction of oncogenes by promoter hypomethylation are frequent mechanisms in different types of cancer and achieve increasing diagnostic and therapeutic importance since the changes are reversible. Therefore, methylation analysis may provide promising clinical applications, including the development of new biomarkers and prediction of the therapeutic response or prognosis. In this review, we aimed to analyze the available information indicating a role for the epigenetic changes in HNC
Hot gas flows on global and nuclear galactic scales
Since its discovery as an X-ray source with the Einstein Observatory, the hot
X-ray emitting interstellar medium of early-type galaxies has been studied
intensively, with observations of improving quality, and with extensive
modeling by means of numerical simulations. The main features of the hot gas
evolution are outlined here, focussing on the mass and energy input rates, the
relationship between the hot gas flow and the main properties characterizing
its host galaxy, the flow behavior on the nuclear and global galactic scales,
and the sensitivity of the flow to the shape of the stellar mass distribution
and the mean rotation velocity of the stars.Comment: 22 pages. Abbreviated version of chapter 2 of the book "Hot
Interstellar Matter in Elliptical Galaxies", Springer 201
Evolution of active galactic nuclei
[Abriged] Supermassive black holes (SMBH) lurk in the nuclei of most massive
galaxies, perhaps in all of them. The tight observed scaling relations between
SMBH masses and structural properties of their host spheroids likely indicate
that the processes fostering the growth of both components are physically
linked, despite the many orders of magnitude difference in their physical size.
This chapter discusses how we constrain the evolution of SMBH, probed by their
actively growing phases, when they shine as active galactic nuclei (AGN) with
luminosities often in excess of that of the entire stellar population of their
host galaxies. Following loosely the chronological developments of the field,
we begin by discussing early evolutionary studies, when AGN represented beacons
of light probing the most distant reaches of the universe and were used as
tracers of the large scale structure. This early study turned into AGN
"Demography", once it was realized that the strong evolution (in luminosity,
number density) of the AGN population hindered any attempt to derive
cosmological parameters from AGN observations directly. Following a discussion
of the state of the art in the study of AGN luminosity functions, we move on to
discuss the "modern" view of AGN evolution, one in which a bigger emphasis is
given to the physical relationships between the population of growing black
holes and their environment. This includes observational and theoretical
efforts aimed at constraining and understanding the evolution of scaling
relations, as well as the resulting limits on the evolution of the SMBH mass
function. Physical models of AGN feedback and the ongoing efforts to isolate
them observationally are discussed next. Finally, we touch upon the problem of
when and how the first black holes formed and the role of black holes in the
high-redshift universe.Comment: 75 pages, 35 figures. Modified version of the chapter accepted to
appear in "Planets, Stars and Stellar Systems", vol 6, ed W. Keel
(www.springer.com/astronomy/book/978-90-481-8818-5). The number of references
is limited upon request of the editors. Original submission to Springer: June
201
Principles of genetic circuit design
Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.National Institute of General Medical Sciences (U.S.) (Grant P50 GM098792)National Institute of General Medical Sciences (U.S.) (Grant R01 GM095765)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (EEC0540879)Life Technologies, Inc. (A114510)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant 4500000552
- …