440 research outputs found

    Complement-Mediated Virus Infectivity Neutralisation by HLA Antibodies Is Associated with Sterilising Immunity to SIV Challenge in the Macaque Model for HIV/AIDS.

    Get PDF
    Sterilising immunity is a desired outcome for vaccination against human immunodeficiency virus (HIV) and has been observed in the macaque model using inactivated simian immunodeficiency virus (SIV). This protection was attributed to antibodies specific for cell proteins including human leucocyte antigens (HLA) class I and II incorporated into virions during vaccine and challenge virus preparation. We show here, using HLA bead arrays, that vaccinated macaques protected from virus challenge had higher serum antibody reactivity compared with non-protected animals. Moreover, reactivity was shown to be directed against HLA framework determinants. Previous studies failed to correlate serum antibody mediated virus neutralisation with protection and were confounded by cytotoxic effects. Using a virus entry assay based on TZM-bl cells we now report that, in the presence of complement, serum antibody titres that neutralise virus infectivity were higher in protected animals. We propose that complement-augmented virus neutralisation is a key factor in inducing sterilising immunity and may be difficult to achieve with HIV/SIV Env-based vaccines. Understanding how to overcome the apparent block of inactivated SIV vaccines to elicit anti-envelope protein antibodies that effectively engage the complement system could enable novel anti-HIV antibody vaccines that induce potent, virolytic serological response to be developed

    Small DNA Pieces in C. elegans Are Intermediates of DNA Fragmentation during Apoptosis

    Get PDF
    While studying small noncoding RNA in C. elegans, we discovered that protocols used for isolation of RNA are contaminated with small DNA pieces. After electrophoresis on a denaturing gel, the DNA fragments appear as a ladder of bands, ∼10 nucleotides apart, mimicking the pattern of nuclease digestion of DNA wrapped around a nucleosome. Here we show that the small DNA pieces are products of the DNA fragmentation that occurs during apoptosis, and correspondingly, are absent in mutant strains incapable of apoptosis. In contrast, the small DNA pieces are present in strains defective for the engulfment process of apoptosis, suggesting they are produced in the dying cell prior to engulfment. While the small DNA pieces are also present in a number of strains with mutations in predicted nucleases, they are undetectable in strains containing mutations in nuc-1, which encodes a DNase II endonuclease. We find that the small DNA pieces can be labeled with terminal deoxynucleotidyltransferase only after phosphatase treatment, as expected if they are products of DNase II cleavage, which generates a 3′ phosphate. Our studies reveal a previously unknown intermediate in the process of apoptotic DNA fragmentation and thus bring us closer to defining this important pathway

    Deep Sequencing of Human Nuclear and Cytoplasmic Small RNAs Reveals an Unexpectedly Complex Subcellular Distribution of miRNAs and tRNA 3′ Trailers

    Get PDF
    MicroRNAs (miRNAs) are ∼22-nt small non-coding regulatory RNAs that have generally been considered to regulate gene expression at the post-transcriptional level in the cytoplasm. However, recent studies have reported that some miRNAs localize to and function in the nucleus.To determine the number of miRNAs localized to the nucleus, we systematically investigated the subcellular distribution of small RNAs (sRNAs) by independent deep sequencing sequenced of the nuclear and cytoplasmic pools of 18- to 30-nucleotide sRNAs from human cells. We identified 339 nuclear and 324 cytoplasmic known miRNAs, 300 of which overlap, suggesting that the majority of miRNAs are imported into the nucleus. With the exception of a few miRNAs evidently enriched in the nuclear pool, such as the mir-29b, the ratio of miRNA abundances in the nuclear fraction versus in the cytoplasmic fraction vary to some extent. Moreover, our results revealed that a large number of tRNA 3′trailers are exported from the nucleus and accumulate in the cytoplasm. These tRNA 3′ trailers accumulate in a variety of cell types, implying that the biogenesis of tRNA 3′ trailers is conserved and that they have a potential functional role in vertebrate cells.Our results provide the first comprehensive view of the subcellular distribution of diverse sRNAs and new insights into the roles of miRNAs and tRNA 3′ trailers in the cell

    An RIG-I-Like RNA Helicase Mediates Antiviral RNAi Downstream of Viral siRNA Biogenesis in Caenorhabditis elegans

    Get PDF
    Dicer ribonucleases of plants and invertebrate animals including Caenorhabditis elegans recognize and process a viral RNA trigger into virus-derived small interfering RNAs (siRNAs) to guide specific viral immunity by Argonaute-dependent RNA interference (RNAi). C. elegans also encodes three Dicer-related helicase (drh) genes closely related to the RIG-I-like RNA helicase receptors which initiate broad-spectrum innate immunity against RNA viruses in mammals. Here we developed a transgenic C. elegans strain that expressed intense green fluorescence from a chromosomally integrated flock house virus replicon only after knockdown or knockout of a gene required for antiviral RNAi. Use of the reporter nematode strain in a feeding RNAi screen identified drh-1 as an essential component of the antiviral RNAi pathway. However, RNAi induced by either exogenous dsRNA or the viral replicon was enhanced in drh-2 mutant nematodes, whereas exogenous RNAi was essentially unaltered in drh-1 mutant nematodes, indicating that exogenous and antiviral RNAi pathways are genetically distinct. Genetic epistatic analysis shows that drh-1 acts downstream of virus sensing and viral siRNA biogenesis to mediate specific antiviral RNAi. Notably, we found that two members of the substantially expanded subfamily of Argonautes specific to C. elegans control parallel antiviral RNAi pathways. These findings demonstrate both conserved and unique strategies of C. elegans in antiviral defense

    A Conserved PHD Finger Protein and Endogenous RNAi Modulate Insulin Signaling in Caenorhabditis elegans

    Get PDF
    Insulin signaling has a profound effect on longevity and the oxidative stress resistance of animals. Inhibition of insulin signaling results in the activation of DAF-16/FOXO and SKN-1/Nrf transcription factors and increased animal fitness. By studying the biological functions of the endogenous RNA interference factor RDE-4 and conserved PHD zinc finger protein ZFP-1 (AF10), which regulate overlapping sets of genes in Caenorhabditis elegans, we identified an important role for these factors in the negative modulation of transcription of the insulin/PI3 signaling-dependent kinase PDK-1. Consistently, increased expression of pdk-1 in zfp-1 and rde-4 mutants contributed to their reduced lifespan and sensitivity to oxidative stress and pathogens due to the reduction in the expression of DAF-16 and SKN-1 targets. We found that the function of ZFP-1 in modulating pdk-1 transcription was important for the extended lifespan of the age-1(hx546) reduction-of-function PI3 kinase mutant, since the lifespan of the age-1; zfp-1 double mutant strain was significantly shorter compared to age-1(hx546). We further demonstrate that overexpression of ZFP-1 caused an increased resistance to oxidative stress in a DAF-16–dependent manner. Our findings suggest that epigenetic regulation of key upstream signaling components in signal transduction pathways through chromatin and RNAi may have a large impact on the outcome of signaling and expression of numerous downstream genes.Leukemia & Lymphoma Society of America (3260-07 Special Fellow Award)Arnold and Mabel Beckman Foundation (Young Investigator Award)United States. National Institutes of Health (Director's New Innovator Award (1 DP2 OD006412-01))United States. National Institutes of Health (grant GM66269)modENCODE (grant U01 HG004270)United States. National Institutes of Health (training grant 5T32 GM07088-34

    DEAD-Box Protein Ddx46 Is Required for the Development of the Digestive Organs and Brain in Zebrafish

    Get PDF
    Spatially and temporally controlled gene expression, including transcription, several mRNA processing steps, and the export of mature mRNA to the cytoplasm, is essential for developmental processes. It is well known that RNA helicases of the DExD/H-box protein family are involved in these gene expression processes, including transcription, pre-mRNA splicing, and rRNA biogenesis. Although one DExD/H-box protein, Prp5, a homologue of vertebrate Ddx46, has been shown to play important roles in pre-mRNA splicing in yeast, the in vivo function of Ddx46 remains to be fully elucidated in metazoans. In this study, we isolated zebrafish morendo (mor), a mutant that shows developmental defects in the digestive organs and brain, and found that it encodes Ddx46. The Ddx46 transcript is maternally supplied, and as development proceeds in zebrafish larvae, its ubiquitous expression gradually becomes restricted to those organs. The results of whole-mount in situ hybridization showed that the expression of various molecular markers in these organs is considerably reduced in the Ddx46 mutant. Furthermore, splicing status analysis with RT-PCR revealed unspliced forms of mRNAs in the digestive organ and brain tissues of the Ddx46 mutant, suggesting that Ddx46 may be required for pre-mRNA splicing during zebrafish development. Therefore, our results suggest a model in which zebrafish Ddx46 is required for the development of the digestive organs and brain, possibly through the control of pre-mRNA splicing

    Novel Modeling of Combinatorial miRNA Targeting Identifies SNP with Potential Role in Bone Density

    Get PDF
    MicroRNAs (miRNAs) are post-transcriptional regulators that bind to their target mRNAs through base complementarity. Predicting miRNA targets is a challenging task and various studies showed that existing algorithms suffer from high number of false predictions and low to moderate overlap in their predictions. Until recently, very few algorithms considered the dynamic nature of the interactions, including the effect of less specific interactions, the miRNA expression level, and the effect of combinatorial miRNA binding. Addressing these issues can result in a more accurate miRNA:mRNA modeling with many applications, including efficient miRNA-related SNP evaluation. We present a novel thermodynamic model based on the Fermi-Dirac equation that incorporates miRNA expression in the prediction of target occupancy and we show that it improves the performance of two popular single miRNA target finders. Modeling combinatorial miRNA targeting is a natural extension of this model. Two other algorithms show improved prediction efficiency when combinatorial binding models were considered. ComiR (Combinatorial miRNA targeting), a novel algorithm we developed, incorporates the improved predictions of the four target finders into a single probabilistic score using ensemble learning. Combining target scores of multiple miRNAs using ComiR improves predictions over the naïve method for target combination. ComiR scoring scheme can be used for identification of SNPs affecting miRNA binding. As proof of principle, ComiR identified rs17737058 as disruptive to the miR-488-5p:NCOA1 interaction, which we confirmed in vitro. We also found rs17737058 to be significantly associated with decreased bone mineral density (BMD) in two independent cohorts indicating that the miR-488-5p/NCOA1 regulatory axis is likely critical in maintaining BMD in women. With increasing availability of comprehensive high-throughput datasets from patients ComiR is expected to become an essential tool for miRNA-related studies. © 2012 Coronnello et al

    A Daphnane Diterpenoid Isolated from Wikstroemia polyantha Induces an Inflammatory Response and Modulates miRNA Activity

    Get PDF
    MicroRNAs (miRNAs) are endogenously expressed single-stranded ∼21–23 nucleotide RNAs that inhibit gene expression post-transcriptionally by binding imperfectly to elements usually within the 3′untranslated region (3′UTR) of mRNAs. Small interfering RNAs (siRNAs) mediate site-specific cleavage by binding with perfect complementarity to RNA. Here, a cell-based miRNA reporter system was developed to screen for compounds from marine and plant extracts that inhibit miRNA or siRNA activity. The daphnane diterpenoid genkwanine M (GENK) isolated from the plant Wikstroemia polyantha induces an early inflammatory response and can moderately inhibit miR-122 activity in the liver Huh-7 cell line. GENK does not alter miR-122 levels nor does it directly inhibit siRNA activity in an in vitro cleavage assay. Finally, we demonstrate that GENK can inhibit HCV infection in Huh-7 cells. In summary, the development of the cell-based miRNA sensor system should prove useful in identifying compounds that affect miRNA/siRNA activity

    Three Drosophila Hox Complex microRNAs Do Not Have Major Effects on Expression of Evolutionarily Conserved Hox Gene Targets during Embryogenesis

    Get PDF
    The discovery of microRNAs has resulted in a major expansion of the number of molecules known to be involved in gene regulation. Elucidating the functions of animal microRNAs has posed a significant challenge as their target interactions with messenger RNAs do not adhere to simple rules. Of the thousands of known animal microRNAs, relatively few microRNA:messenger RNA regulatory interactions have been biologically validated in an normal organismal context. Here we present evidence that three microRNAs from the Hox complex in Drosophila (miR-10-5p, miR-10-3p, miR-iab-4-5p) do not have significant effects during embryogenesis on the expression of Hox genes that contain high confidence microRNAs target sites in the 3′ untranslated regions of their messenger RNAs. This is significant, in that it suggests that many predicted microRNA-target interactions may not be biologically relevant, or that the outcomes of these interactions may be so subtle that mutants may only show phenotypes in specific contexts, such as in environmental stress conditions, or in combinations with other microRNA mutations
    corecore