1,610 research outputs found

    Dynamic properties of noise and Her6 levels are optimized by miR-9, allowing the decoding of the Her6 oscillator

    Get PDF
    This work was supported by a Wellcome Trust Senior Research Fellowship to NP (106185/Z/14/Z).Noise is prevalent in biology and has been widely quantified using snapshot measurements. This static view obscures our understanding of dynamic noise properties and how these affect gene expression and cell state transitions. Using a CRISPR/Cas9 Zebrafish her6::Venus reporter combined with mathematical and in vivo experimentation, we explore how noise affects the protein dynamics of Her6, a basic helix‐loop‐helix transcriptional repressor. During neurogenesis, Her6 expression transitions from fluctuating to oscillatory at single‐cell level. We identify that absence of miR‐9 input generates high‐frequency noise in Her6 traces, inhibits the transition to oscillatory protein expression and prevents the downregulation of Her6. Together, these impair the upregulation of downstream targets and cells accumulate in a normally transitory state where progenitor and early differentiation markers are co‐expressed. Computational modelling and double smFISH of her6 and the early neurogenesis marker, elavl3, suggest that the change in Her6 dynamics precedes the downregulation in Her6 levels. This sheds light onto the order of events at the moment of cell state transition and how this is influenced by the dynamic properties of noise. Our results suggest that Her/Hes oscillations, facilitated by dynamic noise optimization by miR‐9, endow progenitor cells with the ability to make a cell state transition.Publisher PDFPeer reviewe

    Star Formation in the Milky Way and Nearby Galaxies

    Full text link
    We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star formation rates are discussed, and updated prescriptions for calculating star formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.Comment: 55 pages, 15 figures, in press for Annual Reviews of Astronomy and Astrophysics; Updated with corrected equation 5, improved references, and other minor change

    End-to-End Joint Antenna Selection Strategy and Distributed Compress and Forward Strategy for Relay Channels

    Full text link
    Multi-hop relay channels use multiple relay stages, each with multiple relay nodes, to facilitate communication between a source and destination. Previously, distributed space-time codes were proposed to maximize the achievable diversity-multiplexing tradeoff, however, they fail to achieve all the points of the optimal diversity-multiplexing tradeoff. In the presence of a low-rate feedback link from the destination to each relay stage and the source, this paper proposes an end-to-end antenna selection (EEAS) strategy as an alternative to distributed space-time codes. The EEAS strategy uses a subset of antennas of each relay stage for transmission of the source signal to the destination with amplify and forwarding at each relay stage. The subsets are chosen such that they maximize the end-to-end mutual information at the destination. The EEAS strategy achieves the corner points of the optimal diversity-multiplexing tradeoff (corresponding to maximum diversity gain and maximum multiplexing gain) and achieves better diversity gain at intermediate values of multiplexing gain, versus the best known distributed space-time coding strategies. A distributed compress and forward (CF) strategy is also proposed to achieve all points of the optimal diversity-multiplexing tradeoff for a two-hop relay channel with multiple relay nodes.Comment: Accepted for publication in the special issue on cooperative communication in the Eurasip Journal on Wireless Communication and Networkin

    The characteristic blue spectra of accretion disks in quasars as uncovered in the infrared

    Full text link
    Quasars are thought to be powered by supermassive black holes accreting surrounding gas. Central to this picture is a putative accretion disk which is believed to be the source of the majority of the radiative output. It is well known, however, that the most extensively studied disk model -- an optically thick disk which is heated locally by the dissipation of gravitational binding energy -- is apparently contradicted by observations in a few major respects. In particular, the model predicts a specific blue spectral shape asymptotically from the visible to the near-infrared, but this is not generally seen in the visible wavelength region where the disk spectrum is observable. A crucial difficulty was that, toward the infrared, the disk spectrum starts to be hidden under strong hot dust emission from much larger but hitherto unresolved scales, and thus has essentially been impossible to observe. Here we report observations of polarized light interior to the dust-emiting region that enable us to uncover this near-infrared disk spectrum in several quasars. The revealed spectra show that the near-infrared disk spectrum is indeed as blue as predicted. This indicates that, at least for the outer near-infrared-emitting radii, the standard picture of the locally heated disk is approximately correct. The model problems at shorter wavelengths should then be directed toward a better understanding of the inner parts of the revealed disk. The newly uncovered disk emission at large radii, with more future measurements, will also shed totally new light on the unanswered critical question of how and where the disk ends.Comment: published in Nature, 24 July 2008 issue. Supplementary Information can be found at http://www.mpifr-bonn.mpg.de/div/ir-interferometry/suppl_info.pdf Published version can be accessed from http://www.nature.com/nature/journal/v454/n7203/pdf/nature07114.pd

    Restrictions and extensions of semibounded operators

    Full text link
    We study restriction and extension theory for semibounded Hermitian operators in the Hardy space of analytic functions on the disk D. Starting with the operator zd/dz, we show that, for every choice of a closed subset F in T=bd(D) of measure zero, there is a densely defined Hermitian restriction of zd/dz corresponding to boundary functions vanishing on F. For every such restriction operator, we classify all its selfadjoint extension, and for each we present a complete spectral picture. We prove that different sets F with the same cardinality can lead to quite different boundary-value problems, inequivalent selfadjoint extension operators, and quite different spectral configurations. As a tool in our analysis, we prove that the von Neumann deficiency spaces, for a fixed set F, have a natural presentation as reproducing kernel Hilbert spaces, with a Hurwitz zeta-function, restricted to FxF, as reproducing kernel.Comment: 63 pages, 11 figure

    An Assessment of Computer Use, Knowledge, and Attitudes of Diabetes Educators

    Full text link
    A questionnaire to survey attitudes, use, and knowledge of computers was sent to 816 randomly selected members of AADE to determine the degree to which currently available computer resources are used in diabetes education and to investigate the need for future computing resources designed to support diabetes education. Analysis of the data showed that even diabetes educators who use computers infrequently have a generally favorable attitude toward them. Highest use of computers is in noneducational applications, mostly for word processing and record keeping. Most respondents believe that computers have yet to make a major contribution to the teaching and learning process in diabetes education, and few felt adequately prepared for creative use or development of computer applications. Increasing the role of computers in support of patient education will require encouragement and demonstrations of computer efficacy from health care institutions and professional organizations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68469/2/10.1177_014572179201800107.pd

    Electronic voting to encourage interactive lectures: a randomised trial

    Get PDF
    Background: Electronic Voting Systems have been used for education in a variety of disciplines. Outcomes from these studies have been mixed. Because results from these studies have been mixed, we examined whether an EVS system could enhance a lecture's effect on educational outcomes. Methods: A cohort of 127 Year 5 medical students at the University of Adelaide was stratified by gender, residency status and academic record then randomised into 2 groups of 64 and 63 students. Each group received consecutive 40-minute lectures on two clinical topics. One group received the EVS for both topics. The other group received traditional teaching only. Evaluation was undertaken with two, 15-question multiple-choice questionnaires (MCQ) assessing knowledge and problem solving and undertaken as a written paper immediately before and after the lectures and repeated online 8–12 weeks later. Standardised institutional student questionnaires were completed for each lecture and independent observers assessed student behaviour during the lectures. Lecturer's opinions were assessed by a questionnaire developed for this study. Results: Two-thirds of students randomised to EVS and 59% of students randomised to traditional lectures attended. One-half of the students in the EVS group and 41% in the traditional group completed all questionnaires. There was no difference in MCQ scores between EVS and traditional lectures (p = 0.785). The cervical cancer lectures showed higher student ranking in favour of EVS in all parameters. The breast cancer lectures showed higher ranking in favour of traditional lectures in 5 of 7 parameters (p < 0.001). The observed higher-order lecturer-students interactions were increased in the EVS lecture for one lecturer and reduced for the other. Both lecturers felt that the EVS lectures were difficult to prepare, that they were able to keep to time in the traditional lectures, that the educational value of both lecture styles was similar, and that they were neutral-to-slightly favourably disposed to continue with the EVS technology. The 2 lecturers disagreed regarding the ease of preparation of the traditional lecture, their ability to keep to time in the EVS lecture, and personal satisfaction with the EVS lecture. The lecturers felt that EVS encouraged student participation and helped identify where students were having difficulty. Conclusion: In this setting, EVS technology used in large group lectures did not offer significant advantages over the more traditional lecture format.Paul M Duggan, Edward Palmer and Peter Devit
    • 

    corecore