364 research outputs found
Brane-World Gravity
The observable universe could be a 1+3-surface (the "brane") embedded in a
1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model
particles and fields trapped on the brane while gravity is free to access the
bulk. At least one of the \textit{d} extra spatial dimensions could be very
large relative to the Planck scale, which lowers the fundamental gravity scale,
possibly even down to the electroweak ( TeV) level. This revolutionary
picture arises in the framework of recent developments in M theory. The
1+10-dimensional M theory encompasses the known 1+9-dimensional superstring
theories, and is widely considered to be a promising potential route to quantum
gravity. At low energies, gravity is localized at the brane and general
relativity is recovered, but at high energies gravity "leaks" into the bulk,
behaving in a truly higher-dimensional way. This introduces significant changes
to gravitational dynamics and perturbations, with interesting and potentially
testable implications for high-energy astrophysics, black holes, and cosmology.
Brane-world models offer a phenomenological way to test some of the novel
predictions and corrections to general relativity that are implied by M theory.
This review analyzes the geometry, dynamics and perturbations of simple
brane-world models for cosmology and astrophysics, mainly focusing on warped
5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover
the simplest brane-world models in which 4-dimensional gravity on the brane is
modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati
models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004)
"Brane-World Gravity", 119 pages, 28 figures, the update contains new
material on RS perturbations, including full numerical solutions of
gravitational waves and scalar perturbations, on DGP models, and also on 6D
models. A published version in Living Reviews in Relativit
Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.
Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
Leiomyosarcoma with partial rhabdomyoblastic differentiation: First case report of primary cardiac origin
Dimerization of Hepatitis E Virus Capsid Protein E2s Domain Is Essential for Virus–Host Interaction
Hepatitis E virus (HEV), a non-enveloped, positive-stranded RNA virus, is transmitted in a faecal-oral manner, and causes acute liver diseases in humans. The HEV capsid is made up of capsomeres consisting of homodimers of a single structural capsid protein forming the virus shell. These dimers are believed to protrude from the viral surface and to interact with host cells to initiate infection. To date, no structural information is available for any of the HEV proteins. Here, we report for the first time the crystal structure of the HEV capsid protein domain E2s, a protruding domain, together with functional studies to illustrate that this domain forms a tight homodimer and that this dimerization is essential for HEV–host interactions. In addition, we also show that the neutralizing antibody recognition site of HEV is located on the E2s domain. Our study will aid in the development of vaccines and, subsequently, specific inhibitors for HEV
Is the Presence of Microalbuminuria a Relevant Marker of Kidney Disease?
Levels of urinary albumin excretion that are below the usual limit of detection by qualitative testing, but are above normal levels (microalbuminuria; MA), can be readily identified by simple measures, such as the urinary albumin to creatinine ratio in untimed urine samples. Such measurements, particularly when combined with assessment of estimated glomerular filtration rate (eGFR), have utility as biomarkers for enhanced risk of all-cause mortality, cardiovascular events, progressive chronic kidney disease, and end-stage renal disease in diabetic and nondiabetic subjects. However, it is controversial whether “isolated” MA (MA in the absence of a clear reduction in eGFR, urine sediment abnormalities, or structural renal disease) should be regarded as kidney disease. Such MA could also be regarded as a manifestation of a diffuse endothelial (microvascular) injury and thereby collateral kidney damage. This article reviews the current evidence concerning MA as a marker of kidney disease or kidney damage
VEGF, FGF1, FGF2 and EGF gene polymorphisms and psoriatic arthritis
BACKGROUND: Angiogenesis appears to be a first-order event in psoriatic arthritis (PsA). Among angiogenic factors, the cytokines vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and fibroblast growth factors 1 and 2 (FGF1 and FGF2) play a central role in the initiation of angiogenesis. Most of these cytokines have been shown to be upregulated in or associated with psoriasis, rheumatoid arthritis (RA) or ankylosing spondylitis (AS). As these diseases share common susceptibility associations with PsA, investigation of these angiogenic factors is warranted. METHODS: Two hundred and fifty-eight patients with PsA and 154 ethnically matched controls were genotyped using a Sequenom chip-based MALDI-TOF mass spectrometry platform. Four SNPs in the VEGF gene, three SNPs in the EGF gene and one SNP each in FGF1 and FGF2 genes were evaluated. Statistical analysis was performed using Fisher's exact test, and the Cochrane-Armitage trend test. Associations with haplotypes were estimated by using weighted logistic models, where the individual haplotype estimates were obtained using Phase v2.1. RESULTS: We have observed an increased frequency in the T allele of VEGF +936 (rs3025039) in control subjects when compared to our PsA patients [Fisher's exact p-value = 0.042; OR 0.653 (95% CI: 0.434, 0.982)]. Haplotyping of markers revealed no significant associations. CONCLUSION: The T allele of VEGF in +936 may act as a protective allele in the development of PsA. Further studies regarding the role of pro-angiogenic markers in PsA are warranted
Magnetic resonance imaging of the natural history of in situ mammary neoplasia in transgenic mice: a pilot study
Linking microarray reporters with protein functions
<p>Abstract</p> <p>Background</p> <p>The analysis of microarray experiments requires accurate and up-to-date functional annotation of the microarray reporters to optimize the interpretation of the biological processes involved. Pathway visualization tools are used to connect gene expression data with existing biological pathways by using specific database identifiers that link reporters with elements in the pathways.</p> <p>Results</p> <p>This paper proposes a novel method that aims to improve microarray reporter annotation by BLASTing the original reporter sequences against a species-specific EMBL subset, that was derived from and crosslinked back to the highly curated UniProt database. The resulting alignments were filtered using high quality alignment criteria and further compared with the outcome of a more traditional approach, where reporter sequences were BLASTed against EnsEMBL followed by locating the corresponding protein (UniProt) entry for the high quality hits. Combining the results of both methods resulted in successful annotation of > 58% of all reporter sequences with UniProt IDs on two commercial array platforms, increasing the amount of Incyte reporters that could be coupled to Gene Ontology terms from 32.7% to 58.3% and to a local GenMAPP pathway from 9.6% to 16.7%. For Agilent, 35.3% of the total reporters are now linked towards GO nodes and 7.1% on local pathways.</p> <p>Conclusion</p> <p>Our methods increased the annotation quality of microarray reporter sequences and allowed us to visualize more reporters using pathway visualization tools. Even in cases where the original reporter annotation showed the correct description the new identifiers often allowed improved pathway and Gene Ontology linking. These methods are freely available at http://www.bigcat.unimaas.nl/public/publications/Gaj_Annotation/.</p
Association between promoter -1607 polymorphism of MMP1 and Lumbar Disc Disease in Southern Chinese
<p>Abstract</p> <p>Background</p> <p>Matrix metalloproteinases (MMPs) are involved in the degradation of the extracellular matrix of the intervertebral disc. A SNP for guanine insertion/deletion (G/D), the -1607 promoter polymorphism, of the <it>MMP1 </it>gene was found significantly affecting promoter activity and corresponding transcription level. Hence it is a good candidate for genetic studies in DDD.</p> <p>Methods</p> <p>Southern Chinese volunteers between 18 and 55 years were recruited from the population. DDD in the lumbar spine was defined by MRI using Schneiderman's classification. Genomic DNA was isolated from the leukocytes and genotyping was performed using the Sequenom<sup>® </sup>platform. Association and Hardy-Weinberg equilibrium checking were assessed by Chi-square test and Mann-Whitney U test.</p> <p>Results</p> <p>Our results showed substantial evidence of association between -1607 promoter polymorphism of <it>MMP1 </it>and DDD in the Southern Chinese subjects. D allelic was significantly associated with DDD (p value = 0.027, odds ratio = 1.41 with 95% CI = 1.04–1.90) while Genotypic association on the presence of D allele was also significantly associated with DDD (p value = 0.046, odds ratio = 1.50 with 95% CI = 1.01–2.24). Further age stratification showed significant genotypic as well as allelic association in the group of over 40 years (genotypic: p value = 0.035, odds ratio = 1.617 with 95% CI = 1.033–2.529; allelic: p value = 0.033, odds ratio = 1.445 with 95% CI = 1.029–2.029). Disc bulge, annular tears and the Schmorl's nodes were not associated with the D allele.</p> <p>Conclusion</p> <p>We demonstrated that individuals with the presence of D allele for the -1607 promoter polymorphism of <it>MMP1 </it>are about 1.5 times more susceptible to develop DDD when compared with those having G allele only. Further association was identified in individuals over 40 years of age. Disc bulge, annular tear as well as Schmorl's nodes were not associated with this polymorphism.</p
- …
