548 research outputs found

    Effect of Alcohol Carbon Chain on Enthalpy of Combustion and Ignition Delay Time for Gelled Hypergolic Propellant System

    Get PDF
    Study conducted for this paper was to understand the effect on a) enthalpy of combustion and b) ignition delay for gelled hypergolic propellants for the alcohol family, when carbon chain length is varied from ethanol to heptanol. Gel propellant formulated from the alcohol family, ethanol to heptanol, using organic gel with least weight percent added was 2 wt% by weight of the gelling agent. It was observed that the enthalpy of combustion of only pure ethanol gel fuel shows a marked increase in energy with respect to pure liquid and metalized gelled ethanol. Whereas, in the case of other alcohol fuel from propanol to heptanol, the enthalpy of combustion of both gel and metalized gel case is lower with respect to their respective liquid state. Hypergolicity of the formulated gel propellant were achieved using two catalyst CCAT (Copper (II) chloride) and MCAT (Manganese (II) acetylacetonate) with Hydrogen Peroxide (Purity>90 %). The ignition delay time of the formulated gel system with hydrogen peroxide in the presence of catalyst was also investigated and it was observed that the ignition delay time of the all the investigated gels (both pure and metalized) were lower with MCAT with respect to CCAT. The delay time increases for both the catalysts with formulated gel alcohol fuel with increasing carbon chain. At the same time with increase in carbon chain and decrease in vapor density of the fuel, the respective investigated fuel in liquid phase were not hypergolic in the presence of MCAT and CCAT catalyst except for propanol and butanol, which showed hypergolicity only with CCAT.Dr. Jyoti is supported by the Korean Research Fellowship Program funded by the Ministry of Science, ICT and Future Planning through the National Research Foundation of Korea (No. 2015H1D3A1061637

    A rapid, efficient, and facile solution for dental hypersensitivity: The tannin–iron complex

    Get PDF
    Dental hypersensitivity due to exposure of dentinal tubules under the enamel layer to saliva is a very popular and highly elusive technology priority in dentistry. Blocking water flow within exposed dentinal tubules is a key principle for curing dental hypersensitivity. Some salts used in "at home" solutions remineralize the tubules inside by concentrating saliva ingredients. An "in-office" option of applying dense resin sealants on the tubule entrance has only localized effects on well-defined sore spots. We report a self-assembled film that was formed by facile, rapid (4 min), and efficient (approximately 0.5 g/L concentration) dip-coating of teeth in an aqueous solution containing a tannic acid-iron(III) complex. It quickly and effectively occluded the dentinal tubules of human teeth. It withstood intense tooth brushing and induced hydroxyapatite remineralisation within the dentinal tubules. This strategy holds great promise for future applications as an effective and user-friendly desensitizer for managing dental hypersensitivity.111310Ysciescopu

    Segregation of Mn, Si, Al, and oxygen during the friction stir welding of DH36 steel

    Get PDF
    This work investigates the role of welding speed in elemental segregation of Mn, Si, Al, and oxygen during friction stir welding (FSW) in DH36 steel. The experimental work undertaken showed that when the speed of the FSW process exceeds 500 RPM with a traverse speed of 400 mm/min, then elemental segregation of Mn, Si, Al, and O occurred. The mechanism of this segregation is not fully understood; additionally, the presence of oxygen within these segregated elements needs investigation. This work examines the elemental segregation within DH36 steel by conducting heat treatment experiments on unwelded samples incrementally in the range of 1200–1500 °C and at cooling rates similar to that in FSW process. The results of heat treatments were compared with samples welded under two extremes of weld tool speeds, namely W1 low tool speeds (200 RPM with traverse speed of 100 mm/min) and W2 high tool speeds (550 RPM with traverse speed of 400 mm/min). The results from the heat treatment trials showed that segregation commences when the temperature exceeds 1400 °C and Mn, Si, Al, and oxygen segregation progress occurs at 1450 °C and at a cooling rate associated with acicular ferrite formation. It was also found that high rotational speeds exceeding 500 RPM caused localized melting at the advancing-trailing side of the friction stir-welded samples. The study aims to estimate peak temperature limits at which elemental segregation does not occur and hence prevent their occurrence in practice by applying the findings to the tool’s rotational and traverse speed that correspond to the defined temperature

    Efficient Organic Photovoltaics Utilizing Nanoscale Heterojunctions in Sequentially Deposited Polymer/fullerene Bilayer

    Get PDF
    A highly efficient sequentially deposited bilayer (SD-bilayer) of polymer/fullerene organic photovoltaic (OPV) device is developed via the solution process. Herein, we resolve two essential problems regarding the construction of an efficient SD-bilayer OPV. First, the solution process fabrication of the SD-bilayer is resolved by incorporating an ordering agent (OA) to the polymer solution, which improves the ordering of the polymer chain and prevents the bottom-layer from dissolving into the top-layer solution. Second, a non-planar heterojunction with a large surface area is formed by the incorporation of a heterojunction agent (HA) to the top-layer solution. Poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole- 4,7-diyl-2,5-thiophenediyl] (PCDTBT) is used for the bottom-layer and phenyl-C71-butyric-acid-methyl ester (PC70BM) is used for the top-layer. The SD-bilayer OPV produced utilizing both an OA and HA exhibits a power conversion efficiency (PCE) of 7.12% with a high internal quantum efficiency (IQE). We believe our bilayer system affords a new way of forming OPVs distinct from bulk heterojunction (BHJ) systems and offers a chance to reconsider the polymers that have thus far shown unsatisfactory performance in BHJ systemsope

    Unintended learning in primary school practical science lessons from Polanyi’s perspective of intellectual passion

    Get PDF
    This study explored, from the perspective of intellectual passion developed by Michael Polanyi, the unintended learning that occurred in primary practical science lessons. We use the term ‘unintended’ learning to distinguish it from ‘intended’ learning that appears in teachers’ learning objectives. Data were collected using video and audio recordings of a sample of twenty-four whole class practical science lessons, taught by five teachers, in Korean primary schools with 10- to 12-year-old students. In addition, video and audio recordings were made for each small group of students working together in order to capture their activities and intra-group discourse. Pre-lesson interviews with the teachers were undertaken and audio-recorded to ascertain their intended learning objectives. Selected key vignettes, including unintended learning, were analysed from the perspective of intellectual passion developed by Polanyi. What we found in this study is that unintended learning could occur when students got interested in something in the first place and could maintain their interest. In addition, students could get conceptual knowledge when they tried to connect their experience to their related prior knowledge. It was also found that the processes of intended learning and of unintended learning were different. Intended learning was characterized by having been planned by the teacher who then sought to generate students’ interest in it. In contrast, unintended learning originated from students’ spontaneous interest and curiosity as a result of unplanned opportunities. Whilst teachers’ persuasive passion comes first in the process of intended learning, students’ heuristic passion comes first in the process of unintended learning. Based on these findings, we argue that teachers need to be more aware that unintended learning, on the part of individual students, can occur during their lesson and to be able to better use this opportunity so that this unintended learning can be shared by the whole class. Furthermore, we argue that teachers’ deliberate action and a more interactive classroom culture are necessary in order to allow students to develop, in addition to heuristic passion, persuasive passion towards their unintended learning

    CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR

    Get PDF
    Circulating tumor DNA (ctDNA) has emerged as a tumor-specific biomarker for the early detection of various cancers. To date, several techniques have been devised to enrich the extremely small amounts of ctDNA present in plasma, but they are still insufficient for cancer diagnosis, especially at the early stage. Here, we developed a novel method, CUT (CRISPR-mediated, Ultrasensitive detection of Target DNA)-PCR, which uses CRISPR endonucleases to enrich and detect the extremely small amounts of tumor DNA fragments among the much more abundant wild-type DNA fragments by specifically eliminating the wild-type sequences. We computed that by using various orthologonal CRISPR endonucleases such as SpCas9 and FnCpf1, the CUT-PCR method would be applicable to 80% of known cancer-linked substitution mutations registered in the COSMIC database. We further verified that CUT-PCR together with targeted deep sequencing enables detection of a broad range of oncogenes with high sensitivity (<0.01%) and accuracy, which is superior to conventional targeted deep sequencing. In the end, we successfully applied CUT-PCR to detect sequences with oncogenic mutations in the ctDNA of colorectal cancer patients' blood, suggesting that our technique could be adopted for diagnosing various types of cancer at early stages

    ERCC1 expression as a predictive marker of squamous cell carcinoma of the head and neck treated with cisplatin-based concurrent chemoradiation

    Get PDF
    The excision repair cross-complementation group 1 (ERCC1) enzyme plays a rate-limiting role in the nucleotide excision repair pathway and is associated with resistance to platinum-based chemotherapy. The purpose of this study was to evaluate the role of ERCC1 expression as a predictive marker of survival in patients with locally advanced squamous cell carcinoma of the head and neck (SCCHN) treated with cisplatin-based concurrent chemoradiotherapy (CCRT). ERCC1 expression was assessed by immunohistochemical staining. The median age of the 45 patients analysed was 56 years (range 27–75 years), and 82% were men; 73% of all specimens showed high expression of ERCC1. The overall tumour response rate after CCRT was 89%. The median follow-up was 53.6 months (95% CI, 34.5–72.7 months). The 3-year progression-free survival (PFS) and overall survival (OS) rates were 58.7 and 61.3%, respectively. Univariate analyses showed that patients with low expression of ERCC1 had a significantly higher 3-year PFS (83.3 vs 49.4%, P=0.036) and OS (91.7 vs 45.5%, P=0.013) rates. Multivariate analysis showed that low expression of ERCC1 was an independent predictor for prolonged survival (HR, 0.120; 95% CI, 0.016–0.934, P=0.043). These results suggest that ERCC1 expression might be a useful predictive marker of locally advanced SCCHN in patients treated with cisplatin-based CCRT

    Somatostatin receptor in human hepatocellular carcinomas: Biological, patient and tumor characteristics

    Get PDF
    Background/Aim: The evidence on the efficacy of somatostatin analogues in the treatment of hepatocellular carcinoma (HCC) in humans is conflicting. A variety of human tumors demonstrate somatostatin receptors. All subtypes bind human somatostatin with high affinity, while somatostatin analogues bind with high affinity to somatostatin receptor subtype 2 (sst2). We investigated the sst2 expression in HCC and examined whether HCCs expressing sst2 are a distinct subgroup. Patients and Methods: Forty-five human HCCs were tested for sst2 expression and biological alterations. The proliferative capacity was determined with Ki67 immunostaining and the DNA ploidy status was measured by fluorescent in situ hybridization with a chromosome 1-specific repetitive DNA probe. Expression of tumor suppressor genes (p16, p53 and Rb1) was measured by immunohistochemistry. Results: sst2 expression was detected in 30 tumors (67%). No correlation existed between sst2 expression and the immunoprofiles of the tumor suppressor genes, aneuploidy, proliferation, age, gender, α-fetoprotein levels, tumor size, tumor grade and underlying liver disease. Conclusion: In 67% of the patients with HCC, sst2 could be detected in the tumor. No clinical, pathological or biological characteristics were specific for sst2-positive tumors. Copyrigh

    Gene Regulation in Giardia lambia Involves a Putative MicroRNA Derived from a Small Nucleolar RNA

    Get PDF
    Two core microRNA (miRNA) pathway proteins, Dicer and Argonaute, are found in Giardia lamblia, a deeply branching parasitic protozoan. There are, however, no apparent homologues of Drosha or Exportin5 in the genome. Here, we report a 26 nucleotide (nt) RNA derived from a 106 nt Box C/D snoRNA, GlsR2. This small RNA, designated miR5, localizes to the 3′ end of GlsR2 and has a 75 nt hairpin precursor. GlsR2 is processed by the Dicer from Giardia (GlDcr) and generated miR5. Immunoprecipitation of the Argonaute from Giardia (GlAgo) brought down miR5. When a Renilla Luciferase transcript with a 26 nt miR5 antisense sequence at the 3′-untranslated region (3′ UTR) was introduced into Giardia trophozoites, Luciferase expression was reduced ∼25% when synthetic miR5 was also introduced. The Luciferase mRNA level remained, however, unchanged, suggesting translation repression by miR5. This inhibition was fully reversed by introducing also a 2′-O-methylated antisense inhibitor of miR5, suggesting that miR5 acts by interacting specifically with the antisense sequence in the mRNA. A partial antisense knock down of GlDcr or GlAgo in Giardia indicated that the former is needed for miR5 biogenesis whereas the latter is required for miR5-mediated translational repression. Potential targets for miR5 with canonical seed sequences were predicted bioinformatically near the stop codon of Giardia mRNAs. Four out of the 21 most likely targets were tested in the Luciferase reporter assay. miR5 was found to inhibit Luciferase expression (∼20%) of transcripts carrying these potential target sites, indicating that snoRNA-derived miRNA can regulate the expression of multiple genes in Giardia
    corecore