15 research outputs found
Photodynamic therapy-generated vaccines: relevance of tumour cell death expression
Recent investigations have established that tumour cells treated in vitro by photodynamic therapy (PDT) can be used for generating potent vaccines against cancers of the same origin. In the present study, cancer vaccines were prepared by treating mouse SCCVII squamous cell carcinoma cells with photosensitiser chlorin e6-based PDT and used against poorly immunogenic SCCVII tumours growing in syngeneic immunocompetent mice. The vaccine potency increased when cells were post-incubated in culture after PDT treatment for 16 h before they were injected into tumour-bearing mice. Interfering with surface expression of phosphatidylserine (annexin V treatment) and apoptosis (caspase inhibitor treatment) demonstrated that this post-incubation effect is affiliated with the expression of changes associated with vaccine cell death. The cured mice acquired resistance to re-challenge with the same tumour, while the engagement of cytotoxic T lymphocytes was demonstrated by detection of high numbers of degranulating CD8+ cells in vaccinated tumours. The vaccines prepared from ex vivo PDT-treated SCCVII tumour tissue were also highly effective, implying that surgically removed tumour tissue can be directly used for PDT vaccines. This opens attractive prospects for employing PDT vaccines tailored for individual patients targeting specific antigens of the patient's tumour
Pharmacological Effects of Asiatic acid in Glioblastoma Cells under Hypoxia
Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor in adults. Despite current treatment options including surgery followed by radiation and chemotherapy with temozolomide (TMZ) and cisplatin, the median survival rate remains low (<16 months). Combined with increasing drug resistance and the inability of some compounds to cross the blood brain barrier (BBB), novel compounds are being sought for the treatment of this disease. Here, we aimed to examine the pharmacological effect of Asiatic acid (AA) in glioblastoma under hypoxia.
To investigate the effects of AA on cell viability, proliferation, apoptosis and wound healing, SVG p12 fetal glia and U87-MG grade IV glioblastoma cells were cultured under normoxic (21% O2) and hypoxic (1% O2) conditions.
In normoxia, AA reduced cell viability in U87-MG cells in a time and concentration-dependent manner. A significant decrease in viability, compared to cisplatin, was observed following 2hrs of AA treatment with no significant changes in cell proliferation or cell cycle progression observed. Under hypoxia, a significantly greater number of cells underwent apoptosis in comparison to cisplatin. While cisplatin showed a reduction in wound healing in normoxia, a significantly greater reduction was observed following AA treatment. An overall reduction in wound healing was observed under hypoxia.
The results of this study show that AA has cytotoxic effects on glioma cell lines and has the potential to become an alternative treatment for glioblastoma
Efficacy of intracerebral delivery of cisplatin in combination with photon irradiation for treatment of brain tumors.: Intracerebral CDDP with radiotherapy for glioma treatment.
International audienceWe have evaluated the efficacy of intracerebral (i.c.) convection-enhanced delivery (CED) of cisplatin in combination with photon irradiation for the treatment of F98 glioma-bearing rats. One thousand glioma cells were stereotactically implanted into the brains of Fischer rats and 13 days later cisplatin (6 microg/20 microl) was administered i.c. by CED at a flow rate of 0.5 microl/min. On the following day the animals were irradiated with a single 15 Gy dose of X-rays, administered by a linear accelerator (LINAC) or 78.8 keV synchrotron X-rays at the European Synchrotron Radiation Facility (ESRF). Untreated controls had a mean survival time (MST) + or - standard error of 24 + or - 1 days compared to >59 + or - 13 days for rats that received cisplatin alone with 13% of the latter surviving >200 days. Rats that received cisplatin in combination with either 6 MV (LINAC) or 78.8 keV (synchrotron) X-rays had almost identical MSTs of >75 + or - 18 and >74 + or - 19 days, respectively with 17 and 18% long-term survivors. Microscopic examination of the brains of long-term surviving rats revealed an absence of viable tumor cells and cystic areas at the presumptive site of the tumor. Our data demonstrate that i.c. CED of cisplatin in combination with external X-irradiation significantly enhanced the survival of F98 glioma-bearing rats. This was independent of the X-ray beam energy and probably was not due to the production of Auger electrons as we previously had postulated. Our data provide strong support for the approach of concomitantly administering platinum-based chemotherapy in combination with radiotherapy for the treatment of brain tumors. Since a conventional LINAC can be used as the radiation source, this should significantly broaden the clinical applicability of this approach compared to synchrotron radiotherapy, which could only be carried out at a very small number of specialized facilities
Effects of irradiation and cisplatin on human glioma spheroids: inhibition of cell proliferation and cell migration
Investigation of cell migration and proliferation of human glioma cell line spheroids (CLS) and evaluation of morphology, apoptosis, and immunohistochemical expression of MIB-1, p53, and p21 of organotypic muticellular spheroids (OMS) following cisplatin (CDDP) and irradiation (RT). Spheroids of the GaMg glioma cell line and OMS prepared from biopsy tissue of six glioblastoma patients were used. Radiochemosensitvity (5 microg/ml CDDP followed by RT) was determined using migration and proliferation assays on CLS. In OMS, histology and immunohistochemical studies of MIB-1, p53, and p21 expression were examined 24 and 48 h following treatment. Combination treatment led to a migration inhibition of 38% (CDDP 13%; RT 27%) and specific growth delay of 2.6 (CDDP 1.3; RT 2.1) in CLS. Cell cycle analysis after combination treatment showed an accumulation of cells in the G2/M phase. In OMS, apoptosis increased, cell proliferation decreased, and p53/p21 expression increased more pronounced following CDDP+RT. No morphological damage was observed. CDDP can lead to enhancement of the RT effect in spheroids of both human glioma cell line spheroids and biopsy spheroids from glioblastoma specimens. The exerted effect is additive rather than synergisti