18 research outputs found

    On the Relation Between Jupiter's Aurora and the Dawnside Current Sheet

    Get PDF
    Jupiter's auroral emission is a spectacular phenomenon that provides insight into energy release processes related to the coupling of its magnetosphere and ionosphere. This energy release is influenced by solar wind conditions. Using joint observations from Juno and the Hubble Space Telescope (HST), we statistically investigate the relationship between auroral power and current sheet variations under different solar wind conditions. In this study, we reveal that during global main auroral brightening events that are closely connected to solar wind compressions, the dawn side current sheet is substantially thinner than during times when a quiet auroral morphology is present. Furthermore, the total current intensity in the current sheet is found to increase under solar wind compression conditions compared to the quiet period. These findings provide important observational evidence for how magnetospheric dynamics driven by solar wind behavior affect auroral activity, deepening our understanding of the coupling between Jupiter's magnetosphere and ionosphere

    Identifying the Variety of Jovian X-Ray Auroral Structures: Tying the Morphology of X-Ray Emissions to Associated Magnetospheric Dynamics

    Get PDF
    We define the spatial clustering of X-rays within Jupiter's northern auroral regions by classifying their distributions into “X-ray auroral structures.” Using data from Chandra during Juno's main mission observations (24 May 2016 to 8 September 2019), we define five X-ray structures based on their ionospheric location and calculate the distribution of auroral photons. The morphology and ionospheric location of these structures allow us to explore the possibility of numerous X-ray auroral magnetospheric drivers. We compare these distributions to Hubble Space Telescope (HST) and Juno (Waves and MAG) data, and a 1D solar wind propagation model to infer the state of Jupiter's magnetosphere. Our results suggest that the five sub-classes of “X-ray structures” fall under two broad morphologies: fully polar and low latitude emissions. Visibility modeling of each structure suggests the non-uniformity of the photon distributions across the Chandra intervals are likely associated with the switching on/off of magnetospheric drivers as opposed to geometrical effects. The combination of ultraviolet (UV) and X-ray morphological structures is a powerful tool to elucidate the behavior of both electrons and ions and their link to solar wind/magnetospheric conditions in the absence of an upstream solar monitor. Although much work is still needed to progress the use of X-ray morphology as a diagnostic tool, we set the foundations for future studies to continue this vital research

    A Rotating Azimuthally Distributed Auroral Current System on Saturn Revealed by the Cassini Spacecraft

    Get PDF
    Stunning aurorae are mainly produced when accelerated electrons travel along magnetic field lines to collide with the atmosphere. The motion of electrons often corresponds to the evolution of a magnetic field-aligned current system. In the terrestrial magnetosphere, the current system is formed at the night-side sector, and thus produces an auroral bulge at night. Due to the different energy sources between Saturn and the Earth, it is expected that their auroral current systems are fundamentally different, although the specific auroral driver at Saturn is poorly understood. Using simultaneous measurements of the aurora, particles, magnetic fields, and energetic neutral atoms, we reveal that a chain of paired currents, each of which includes a downward and an upward current branch, is formed in Saturn's magnetosphere, which generates separated auroral patches. These findings inform similar auroral current structures between the Earth and Saturn, while the difference is that Saturn's unique mass and energy sources lead to a rotational characteristic

    An isolated, bright cusp aurora at Saturn

    Get PDF
    Saturn's dayside aurora displays a number of morphological features poleward of the main emission region. We present an unusual morphology captured by the Hubble Space Telescope on 14 June 2014 (day 165), where for 2 h, Saturn's FUV aurora faded almost entirely, with the exception of a distinct emission spot at high latitude. The spot remained fixed in local time between 10 and 15 LT and moved poleward to a minimum colatitude of ~4°. It was bright and persistent, displaying intensities of up to 49 kR over a lifetime of 2 h. Interestingly, the spot constituted the entirety of the northern auroral emission, with no emissions present at any other local time—including Saturn's characteristic dawn arc, the complete absence of which is rarely observed. Solar wind parameters from propagation models, together with a Cassini magnetopause crossing and solar wind encounter, indicate that Saturn's magnetosphere was likely to have been embedded in a rarefaction region, resulting in an expanded magnetosphere configuration during the interval. We infer that the spot was sustained by reconnection either poleward of the cusp or at low latitudes under a strong component of interplanetary magnetic field transverse to the solar wind flow. The subsequent poleward motion could then arise from either reconfiguration of successive open field lines across the polar cap or convection of newly opened field lines. We also consider the possible modulation of the feature by planetary period rotating current systems

    Upper atmospheres and ionospheres of planets and satellites

    Full text link
    The upper atmospheres of the planets and their satellites are more directly exposed to sunlight and solar wind particles than the surface or the deeper atmospheric layers. At the altitudes where the associated energy is deposited, the atmospheres may become ionized and are referred to as ionospheres. The details of the photon and particle interactions with the upper atmosphere depend strongly on whether the object has anintrinsic magnetic field that may channel the precipitating particles into the atmosphere or drive the atmospheric gas out to space. Important implications of these interactions include atmospheric loss over diverse timescales, photochemistry and the formation of aerosols, which affect the evolution, composition and remote sensing of the planets (satellites). The upper atmosphere connects the planet (satellite) bulk composition to the near-planet (-satellite) environment. Understanding the relevant physics and chemistry provides insight to the past and future conditions of these objects, which is critical for understanding their evolution. This chapter introduces the basic concepts of upper atmospheres and ionospheres in our solar system, and discusses aspects of their neutral and ion composition, wind dynamics and energy budget. This knowledge is key to putting in context the observations of upper atmospheres and haze on exoplanets, and to devise a theory that explains exoplanet demographics.Comment: Invited Revie

    Close-range remote sensing of Saturn's rings during Cassini's ring-grazing orbits and Grand Finale

    Get PDF
    Saturn’s rings are an accessible exemplar of an astrophysical disk, tracing the Saturn system’s dynamical processes and history. We present close-range remote-sensing observations of the main rings from the Cassini spacecraft. We find detailed sculpting of the rings by embedded masses, and banded texture belts throughout the rings. Saturn-orbiting streams of material impact the F ring. There are fine-scaled correlations among optical depth, spectral properties, and temperature in the B ring, but anticorrelations within strong density waves in the A ring. There is no spectral distinction between plateaux and the rest of the C ring, whereas the region outward of the Keeler gap is spectrally distinct from nearby regions. These results likely indicate that radial stratification of particle physical properties, rather than compositional differences, is responsible for producing these ring structures. © 2019 American Association for the Advancement of Science. All rights reserved

    The Morphology of Saturn's Aurorae Observed During the Cassini Grand Finale

    No full text
    Cassini's mission exploring the Saturn system ended with the Grand Finale, a series of orbits bringing the spacecraft closer to the planet than ever before and providing unique opportunities for observations of the ultraviolet aurorae. This study presents a selection of high‐resolution imagery showing the aurorae's small‐scale structure in unprecedented detail. We find the main arc to vary between a smooth and a rippled structure, likely indicating quiet and disturbed magnetospheric conditions, respectively. It is usually accompanied by a diffuse and dim outer emission on its equatorward side which appears to be driven by wave scattering of hot electrons from the inner ring current into the loss cone. The duskside is characterized by highly dynamic structures which may be signatures of radial plasma injections. This image set will be the only high‐resolution data for the foreseeable future and hence forms an important basis for future auroral research on Saturn.</div

    Comparisons Between Jupiter's X‐ray, UV and Radio Emissions and In‐Situ Solar Wind Measurements During 2007

    No full text
    We compare Chandra and XMM‐Newton X‐ray observations of Jupiter during 2007 with a rich multi‐instrument dataset including: upstream in‐situ solar wind measurements from the New Horizons spacecraft, radio emissions from the Nançay Decametric Array and Wind/Waves, and UV observations from the Hubble Space Telescope. New Horizons data revealed two corotating interaction regions (CIRs) impacted Jupiter during these observations. Non‐Io decametric bursts and UV emissions brightened together and varied in phase with the CIRs. We characterise 3 types of X‐ray aurorae: hard X‐ray bremsstrahlung main emission, pulsed/flared soft X‐ray emissions and a newly identified dim flickering (varying on short‐timescales, but quasi‐continuously present) aurora. For most observations, the X‐ray aurorae were dominated by pulsed/flaring emissions, with ion spectral lines that were best fit by Iogenic plasma. However, the brightest X‐ray aurora was coincident with a magnetosphere expansion. For this observation, the aurorae were produced by both flickering emission and erratic pulses/flares. Auroral spectral models for this observation required the addition of solar wind ions to attain good fits, suggesting solar wind entry into the outer magnetosphere or directly into the pole for this particularly bright observation. X‐ray bremsstrahlung from high energy electrons was only bright for one observation, which was during a forward shock. This bremsstrahlung was spatially coincident with bright UV main emission (power> 1TW) and X‐ray ion spectral line dusk emission, suggesting closening of upward and downward current systems during the shock. Otherwise, the bremsstrahlung was dim and UV main emission power was also lower(<700 GW), suggesting their power scaled together

    Jupiter's X‐rays 2007 Part 1: Jupiter's X‐ray Emission During Solar Minimum

    No full text
    The 2007‐2009 solar minimum was the longest of the space age. We present the first of two companion papers on Chandra and XMM‐Newton X‐ray campaigns of Jupiter through February‐March 2007. We find that low solar X‐ray flux during solar minimum causes Jupiter's equatorial regions to be exceptionally X‐ray dim (0.21GW at minimum; 0.76GW at maximum). While the Jovian equatorial emission varies with solar cycle, the aurorae have comparably bright intervals at solar minimum and maximum. We apply atomic charge exchange models to auroral spectra and find that iogenic plasma of sulphur and oxygen ions provides excellent fits for XMM‐Newton observations. The fitted spectral S:O ratios of 0.4‐1.3 are in good agreement with in‐situ magnetospheric S:O measurements of 0.3‐1.5, suggesting that the ions that produce Jupiter's X‐ray aurora predominantly originate inside the magnetosphere. The aurorae were particularly bright on Feb 24‐25 and March 8‐9, but these two observations exhibit very different spatial, spectral and temporal behaviour. 24‐25 Feb was the only observation in this campaign with significant hard X‐ray bremsstrahlung from precipitating electrons, suggesting this may be rare. For 8‐9 March, a bremsstrahlung component was absent, but bright oxygen O6+ lines and best‐fit models containing carbon, point to contributions from solar wind ions. This contribution is absent in the other observations. Comparing simultaneous Chandra ACIS and XMM‐Newton EPIC spectra showed that ACIS systematically under‐reported 0.45‐0.6keV Jovian emission, suggesting quenching may be less important for Jupiter's atmosphere than previously thought. We therefore recommend XMM‐Newton for spectral analyses and quantifying opacity/quenching effects
    corecore