226 research outputs found

    From the macroscopic to the microscopic: some scientific insights

    Get PDF
    The full report in which this chapter appears is in ORE: http://hdl.handle.net/10871/1416

    Особенности реализации режимов пониженного энергопотребления при внедрении распределенной системы управления теплопотреблением здания

    Get PDF
    An integrated model, consisting of a distributed automatic control system, building heating system and individual heating unit is designed. The model is based on the Simulink application. The conducted research allowed to reveal features of heating system operation with distributed control system. The results of comparison the climatic variables of control rooms are presented. The conclusions about the possibility of increasing the energy efficiency of heating system in the implementation of distributed control systems are presented

    A new method to elucidate fracture mechanism and microstructure evolution in titanium during dissimilar friction stir welding of aluminum and titanium

    Get PDF
    In the friction stir welding (FSW) of dissimilar materials, the weld nugget exhibits composite properties and is composed of hard particles (high-strength material) distributed in a soft matrix material. The distribution of these particles influences the properties of the weld. Therefore, it is useful to characterize the deformation and fragmentation of the high-strength material from which they originate. In the current study, FSW of aluminum (Al) to titanium (Ti) was performed and a new technique was introduced to remove Al from the post-weld sample to characterize the deformation and fragmentation of Ti in the weld nugget. The post-weld sample showed that Ti particles were inhomogeneously distributed. It was understood that the plastic deformation of the Ti depends on its location of the wel

    A Review—Additive Manufacturing of Intermetallic Alloys Based on Orthorhombic Titanium Aluminide Ti2AlNb

    Get PDF
    Titanium alloys based on orthorhombic titanium aluminide Ti2AlNb are promising refractory materials for aircraft engine parts in the operating temperature range from 600–700 °C. Parts made of Ti2AlNb-based alloys by traditional technologies, such as casting and metal forming, have not yet found wide application due to the sensitivity of processability and mechanical properties in chemical composition and microstructure compared with commercial solid-solution-based titanium alloys. In the last three decades, metal additive manufacturing (MAM) has attracted the attention of scientists and engineers for the production of intermetallic alloys based on Ti2AlNb. This review summarizes the recent achievements in the production of O-phase-based Ti alloys using MAM, including the analysis of the feedstock materials, technological processes, machines, microstructure, phase composition and mechanical properties. Powder bed fusion (PBF) and direct energy deposition (DED) are the most widely employed MAM processes to produce O-phase alloys. MAM provides fully dense, fine-grained material with a superior combination of mechanical properties at room temperature. Further research on MAM for the production of critical parts made of Ti2AlNb-based alloys can be focused on a detailed study of the influence of post-processing and chemical composition on the formation of the structure and mechanical properties, including cyclic loading, fracture toughness, and creep resistance. © 2023 by the authors.22–49-02066This work has been supported by joint RSF-DST grant № 22–49-02066

    Evolution of crystalline orientations in the production of ferritic stainless steel

    Get PDF
    Ferritic stainless steel EN 1.4016 is used in a wide range of applications, the most common ones related to sheet forming. Several problems in the post-processing of these steels relates to their texture and anisotropy. Therefore, it is necessary to know the mechanisms of texture formation in the subsequent stages of metal manufacturing processes. EBSD has been demonstrated as a successful characterisation technique for this purpose. It is known that during re-crystallisation of Fe-Cr steels, deviations from the desired.-fibre texture promote a decrease of deep drawability. Additionally, a-fibre damages formability. Subsequent cold rolling and annealing can enhance the deep drawing properties of the steel sheet. In this research, a standard sample and a modified one with optimised settings as regard to chemical composition and manufacturing process, to improve the formability properties, are characterised. To analyse the preferred orientation and the type of main fibre present in the material, ODF and Aztec Reclassify Phase, to calculate the content of martensite, were used
    corecore