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Abstract 

 A modeling and experimental investigation has been conducted to explore the effect of 

processing route on texture evolution during equal channel angular extrusion (ECAE) of 

aluminum plate samples. It is found that although the textures in the plates develop along 

orientation fibers previously identified for ECAE-processed rods and bars, the main 

components and strength of these textures vary significantly with processing route, which 

may lead to considerable differences in the plastic anisotropy of the plates. 
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 Equal channel angular extrusion (ECAE) has been shown to be an efficient technique 

for producing sub-microcrystalline and nanostructured materials.[1] While the effect of 

processing route on the microstructure and texture development in ECAE-deformed rods and 

bars has been investigated in a large number of publications [2-6], only a few studies have 

been carried out for establishing this effect for ECAE-processed plates, for which new routes, 

different from those proposed for rod or bar samples, can be utilized.[7-11]
 

 In a recent work on AA1050 plates deformed by 8 ECAE passes either without rotation 

between passes (route A) or with 90 deg sequential rotations about the plate normal ND 

(route BC〈ND〉),[11] it was found that the microstructure obtained via route BC〈ND〉 was more 

refined than that obtained via route A. The extent of refinement in these plates was 

nevertheless less significant than that in a rod sample extruded with 90 deg inter-pass 

rotations about the extrusion direction, ED (route BC〈ED〉).[11] The effect of the processing 

route on texture evolution in ECAE plates was investigated by Ferrasse et al.[9,10] However, 

these authors considered a large number of orientation fibers differing from the shear-type 

fibers commonly adopted for characterizing ECAE textures,[2-6] which complicates a 

comparison of textures in their plate samples with those in rod samples described in many 

other publications. To better compare the general tendencies of texture evolution during 

ECAE of plates with those of rod samples, a modeling and experimental investigation of 

textures formed by ECAE has therefore been carried out and is described in the present work 

for commercial purity aluminum. 

 A recrystallized AA1050 plate with an average grain size of ~50 μm and a pronounced 

cube texture was used as a starting material. Samples with dimensions of 15 × 75 × 75 mm3 

were subjected to 8 ECAE passes either via route A or route BC〈ND〉, at room temperature, 

using a 90 deg die with a sharp outer corner and a sliding floor, and using an anti-seize 

lubricant.[11] Since during ECAE the rectangular cuboid shape of the initial sample was 
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distorted by shear, the leading end of the route BC〈ND〉 sample had to be trimmed after the first 

pass in order to reinsert the 90 deg-rotated sample into the die. For the subsequent passes via 

route BC〈ND〉, the end was only slightly ground between passes. To enable a direct comparison 

with these plate samples, a rod sample with a dimension of 15 × 15 × 75 mm3, prepared from 

the same initial material, was subjected to 8 passes via route BC〈ED〉.[11] Textures were 

measured using electron backscatter diffraction (EBSD) in the central part of the samples, 

covering several regions in the ED−ND section with a total area of 3~4 mm2 for each sample. 

For each sample, an orientation distribution function (ODF) was derived from the 

EBSD-measured orientations assuming a Gaussian distribution of the type ( )2
0exp ψ ψ  

with a half width of 10 deg for each measured orientation.[12,13] The series expansion method 

with Lmax = 22 was used for the ODF calculations. 

 Crystal plasticity simulations of multi-pass ECAE were carried out for each of the 

three routes using the Taylor model,[14] assuming ideal simple shear deformation in each pass. 

The initial texture in the simulations was represented by 3000 orientations, obtained from the 

ODF for the starting material, using the discretization method of Tóth and Van Houtte.[12,15] 

The deformation was accommodated by {111}〈110〉 slip. The shear rate sγ  and resolved 

shear stress sτ  of a slip system s were considered to obey a power-law relationship of 

1

0 0sgn( )
ms s s s sgg  τ τ τ=  , where m is the strain-rate sensitivity index (m = 0.02), and 0

sγ  and 

0
sτ  are respectively the reference shear rate and shear stress, which were assumed to be 

identical for all slip systems and did not change during deformation. ODFs were calculated 

from the simulated orientation set using the same procedure as for the experimentally 

measured orientations. As an indicator of the texture strength, a texture index[13] was 

calculated from the ODF of each simulated or experimental texture. For the initial texture the 

texture index was ~7. 
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 Figure 1 shows the {111} pole figures for the simulated textures after 1, 2, 4 and 8 

ECAE passes (N) via the three routes based on simple shear for each pass, together with the 

experimental textures after 8 passes. It is seen that the simulated texture after the first pass 

(Figure 1(a)) is dominated by a rotated cube component with considerable spread about the 

direction perpendicular to the die intersection plane. Shear-type textures become evident 

after the second pass (Figure 1(b)) and are observed to evolve very differently for each of the 

different routes. As expected from the simple shear deformation in each pass, the texture of 

the route A sample shows monoclinic symmetry, with the transverse direction (TD) as a dyad 

axis. This symmetry is partly destroyed in the BC〈ND〉 and BC〈ED〉 samples due to the additional 

inter-pass rotation of the samples about axes that are perpendicular to the dyad axis. The 

texture strength increases significantly with increasing N for route BC〈ND〉, whereas the 

strengthening of texture for route BC〈ED〉 is less pronounced. In contrast, no significant 

variation in the texture strength is found for route A (Figures 1(a-d)). 

 Comparison of the experimental and simulated textures after 8 passes (Figures 1(d) 

and (f)) reveals a good overall qualitative agreement, although the simulations somewhat 

overestimate the texture strength, as often found in Taylor-type texture simulations where 

grain interactions are neglected. The much higher texture index in Figure 1(d) for the 

simulated route BC〈ND〉 data as compared to the experimental result could, however, also be 

attributed to the fact that the trimming of the sample after the first pass was not taken into 

account in the simulation of this texture. This may be significant because in subsequent 

ECAE with a trimmed sample, plane strain compression (PSC) occurs with contraction along 

the pressing direction and extension along the TD in the inlet channel before its passage 

through the die corner. It is pertinent to mention that a similar PSC-type deformation would 

still occur for N > 1 passes via route BC〈ND〉 if the length of an initial plate is made shorter 

than its width to avoid the need to trim the sample after the first pass. 
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 To roughly evaluate the effect of additional PSC on the texture development via route 

BC〈ND〉, the 8-pass texture for this route was simulated with additional 10 pct PSC 

deformation (with compression along the pressing direction) before simple shear for each of 

the N > 1 passes. The result is shown in Figure 1(e). It is apparent that this additional PSC 

weakens the resulting texture, leading to a better agreement between the experimental and 

simulated textures for the route BC〈ND〉 sample. This observation highlights the importance of 

considering the detailed deformation geometry in such simulations. 

 Figure 2 shows ODFs calculated from the EBSD data for each of the 8-pass ECAE 

samples. Note that the monoclinic symmetry apparent in Figure 1(f) was applied for 

calculation of the ODF for the route A sample. The locations of ideal orientation fibers (f1, 

f2, f3) and some key ideal orientations along them, namely, *
1A θ (111)[112]θ , *

2A θ (111)[112]θ , 

Aθ (111)[110]θ , Aθ (111)[110]θ , Bθ (112)[110]θ , Bθ (112)[110]θ  and Cθ {001} 110 θ〈 〉 , all of 

which have previously been identified for single-pass ECAE of face-centered cubic materials 

in rod and bar samples,[16] are indicated in these plots. Here the Miller indices {hkl}〈uvw〉θ 

denote orientations that have {hkl} planes and 〈uvw〉 directions parallel respectively to the 

macroscopic shear plane (MSP) and macroscopic shear direction (MSD). The f1 fiber 

contains only {111}〈uvw〉θ orientations, whereas the f2 and f3 fibers consist of both 

{111}〈uvw〉θ and {hkl}〈110〉θ orientations. 

 It is evident from Figure 2 that the main components in the experimental textures 

develop along the f1, f2 and f3 fibers. This suggests that the general tendency of texture 

evolution in ECAE, where the slip planes and slip directions tend to be parallel to the MSP 

and MSD, respectively, is valid not only for the routes investigated previously for rod and 

bar samples, such as routes A and BC〈ED〉, but also for route BC〈ND〉, which is unique to plates. 

The differences between these textures are mainly in the completeness of the orientation 

fibers and in the intensity of the main components along them. Orientation densities along 
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the f1, f2 and f3 fibers in the route A sample are relatively uniform, with the maximum 

intensity near the Bθ  and Bθ  components (Figure 2(a)). The other two routes lead to less 

complete orientation fibers, with the maximum intensity either being intermediate between 

the *
1A θ  and Aθ  components for the route BC〈ND〉 sample (Figure 2(b)) or near *

1A θ  for 

route BC〈ED〉 (Figure 2(c)). Overall, the textures observed in the 8-pass AA1050 samples 

processed via routes A and BC〈ED〉 are similar to, though slightly weaker than, those found in 

Cu rods deformed to similar strain levels.[3,5,6] 

 It is interesting also to compare the textures obtained in our work with previous results 

on ECAE-processed plates.[9] While the experimental observations of texture strengths in the 

AA1050 plates are similar to those reported by Ferrasse et al.[9] on Al−0.5 wt pct Cu plates, 

there is a large difference in the simulation data, where the simulated textures reported in 

Reference 9 are much stronger than those in our simulations. For example, for route BC〈ND〉 

(termed route D in Reference 9) the texture indices from their Taylor simulations[9] are 

almost an order of magnitude greater than those obtained in our work (see Figures 1(a-c)). 

The reason for such a large discrepancy between the simulation data is unclear. 

 Understanding the effect of processing route on the texture evolution is of interest in 

controlling the texture-induced plastic anisotropy, which is of particular significance for 

ECAE-processed plates as they can be subjected to additional sheet forming processes. As a 

preliminary assessment of such effects for the plate samples, the R-values (i.e., Lankford 

coefficients) of the 8-pass samples were calculated based on the experimental textures by 

simulating uniaxial tensile deformation along different directions in the ED−TD plane, using 

the Taylor model. The resulting values (Figure 3) suggest that the different textures in the 

plate samples for different routes may lead to significantly different degrees of plastic 

anisotropy. In particular, as follows from the average R-value (Rave) and the difference 

between the maximum and minimum R-values (Rdiff), which measure the normal and planar 
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anisotropy, respectively, the route BC〈ND〉 sample is characterized by a slightly higher normal 

anisotropy and a much lower planar anisotropy than the route A sample. Thus, plates 

produced via route BC〈ND〉 are expected to be more suitable than plates extruded via route A 

for deep drawing applications where high normal anisotropy and low planar anisotropy are 

desired. 

 In summary, the crystal plasticity simulations reveal a strong effect of the processing 

route on the texture evolution during ECAE for both plate and rod samples. Such effects are 

verified based on EBSD measurements after 8 ECAE passes. It is shown that the textures in 

the plate samples develop close to shear-type orientation fibers previously identified for 

ECAE-processed rod and bar samples. The main components and strength of the texture 

developed via route BC〈ND〉, which is unique to plates, however, differ from those produced 

via routes A and BC〈ED〉. The differences in the textures are expected to induce considerable 

differences in the plastic anisotropy. Furthermore, it is shown that inclusion of an additional 

PSC component, corresponding to the effect of trimming the route BC〈ND〉 sample after the 

first ECAE pass, significantly modifies the texture predictions. 
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Figure 1. {111} pole figures representing textures after ECAE: (a-d) simulated textures after 

1 (a), 2 (b), 4 (c) and 8 (d) passes via different routes, assuming simple shear in each pass; (e) 

simulated texture after 8 passes via route BC〈ND〉, with PSC introduced before simple shear to 

mimic the effect of trimming of the sample; (f) experimental textures after 8 passes via 

different routes. The texture index is indicated next to each pole figure. 
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Figure 2. ϕ2 = constant sections of ODFs (with Euler angles in Bunge’s notation) showing 

experimental textures after 8 passes: (a) route A; (b) route BC〈ND〉; (c) route BC〈ED〉. 
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Figure 3. Predicted R-values for the plate samples after 8 passes via either route A or route 

BC〈ND〉. 
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