109,921 research outputs found
Theoretical limit of the minimal magnetization switching field and the optimal field pulse for Stoner particles
The theoretical limit of the minimal magnetization switching field and the
optimal field pulse design for uniaxial Stoner particles are investigated. Two
results are obtained. One is the existence of a theoretical limit of the
smallest magnetic field out of all possible designs. It is shown that the limit
is proportional to the damping constant in the weak damping regime and
approaches the Stoner-Wohlfarth (SW) limit at large damping. For a realistic
damping constant, this limit is more than ten times smaller than that of
so-called precessional magnetization reversal under a non-collinear static
field. The other is on the optimal field pulse design: If the magnitude of a
magnetic field does not change, but its direction can vary during a reversal
process, there is an optimal design that gives the shortest switching time. The
switching time depends on the field magnitude, damping constant, and magnetic
anisotropy. However, the optimal pulse shape depends only on the damping
constant.Comment: 4 pages, 4 figure
Binomial coefficients, Catalan numbers and Lucas quotients
Let be an odd prime and let be integers with and . In this paper we determine
mod for ; for example,
where is the Jacobi symbol, and is the Lucas
sequence given by , and for
. As an application, we determine modulo for any integer , where denotes the
Catalan number . We also pose some related conjectures.Comment: 24 pages. Correct few typo
Critical current under an optimal time-dependent polarization direction for Stoner particles in spin-transfer torque induced fast magnetization reversal
Fast magnetization reversal of uniaxial Stoner particles by spin-transfer
torque due to the spin-polarized electric current is investigated. It is found
that a current with a properly designed time-dependent polarization direction
can dramatically reduce the critical current density required to reverse a
magnetization. Under the condition that the magnitude and the polarization
degree of the current do not vary with time, the shape of the optimal
time-dependent polarization direction is obtained such that the magnetization
reversal is the fastest.Comment: 4 pages, 3 figure
Discussion on `Characterization of 1-3 piezoelectric polymer composites - a numerical and analytical evaluation procedure for thickness mode vibrations' by C.V. Madhusudhana Rao, G. Prasad, Condens. Matter Phys., 2010, Vol.13, No.1, 13703
In the paper entitled "Characterization of 1-3 piezoelectric polymer
composites - a numerical and analytical evaluation procedure for thickness mode
vibrations", the dependence of the thickness electromechanical coupling
coefficient on the aspect ratio of piezoceramic fibers is studied by finite
element simulation for various volume fractions of piezoceramic fibers in a 1-3
composite. The accuracy of the results is questionable because the boundary
condition claiming that `predefined displacements are applied perpendicularly
on plane on all nodes' is not suitable for the analysis of 1-3 composite
with comparatively large aspect ratio from 0.2 to 1. A discussion regarding
this problem and the suggested corrections are presented in this paper.Comment: 4 pages, 3 figure
Floquet spin states in graphene under ac driven spin-orbit interaction
We study the role of periodically driven time-dependent Rashba spin-orbit
coupling (RSOC) on a monolayer graphene sample. After recasting the originally
system of dynamical equations as two time-reversal related
two-level problems, the quasi-energy spectrum and the related dynamics are
investigated via various techniques and approximations. In the static case the
system is a gapped at the Dirac point. The rotating wave approximation (RWA)
applied to the driven system unphysically preserves this feature, while the
Magnus-Floquet approach as well as a numerically exact evaluation of the
Floquet equation show that this gap is dynamically closed. In addition, a
sizable oscillating pattern of the out-of-plane spin polarization is found in
the driven case for states which completely unpolarized in the static limit.
Evaluation of the autocorrelation function shows that the original uniform
interference pattern corresponding to time-independent RSOC gets distorted. The
resulting structure can be qualitatively explained as a consequence of the
transitions induced by the ac driving among the static eigenstates, i.e., these
transitions modulate the relative phases that add up to give the quantum
revivals of the autocorrelation function. Contrary to the static case, in the
driven scenario, quantum revivals (suppresions) are correlated to spin up
(down) phases.Comment: 10 pages, 8 figures. Typos corrected. Accepted for publication in PR
Vision-based hand gesture interaction using particle filter, principle component analysis and transition network
Vision-based human-computer interaction is becoming important nowadays. It offers natural interaction with computers and frees users from mechanical interaction devices, which is favourable especially for wearable computers. This paper presents a human-computer interaction system based on a conventional webcam and hand gesture recognition. This interaction system works in real time and enables users to control a computer cursor with hand motions and gestures instead of a mouse. Five hand gestures are designed on behalf of five mouse operations: moving, left click, left-double click, right click and no-action. An algorithm based on Particle Filter is used for tracking the hand position. PCA-based feature selection is used for recognizing the hand gestures. A transition network is also employed for improving the accuracy and reliability of the interaction system. This interaction system shows good performance in the recognition and interaction test
Fast domain wall propagation under an optimal field pulse in magnetic nanowires
We investigate field-driven domain wall (DW) propagation in magnetic
nanowires in the framework of the Landau-Lifshitz-Gilbert equation. We propose
a new strategy to speed up the DW motion in a uniaxial magnetic nanowire by
using an optimal space-dependent field pulse synchronized with the DW
propagation. Depending on the damping parameter, the DW velocity can be
increased by about two orders of magnitude compared the standard case of a
static uniform field. Moreover, under the optimal field pulse, the change in
total magnetic energy in the nanowire is proportional to the DW velocity,
implying that rapid energy release is essential for fast DW propagation.Comment: 4 pages, 3 figures; updated version replace
- …
