1,882 research outputs found
Proteomic analysis of the rat ovary following chronic low-dose exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitously distributed endocrine-disrupting chemical and reproductive toxicant. In order to elucidate low-dose TCDD-mediated effects on reproductive or endocrine functions, female Sprague-Dawley rats were orally administered various concentrations (20, 50, or 125 ng/kg once weekly) TCDD for 29 wk. A proteomic analysis of the ovaries by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry showed distinct changes in the levels of several proteins that are relevant markers of TCDD toxicity. Serum estradiol (E2) levels of TCDD-treated animals were markedly lower than control. There were no significant differences in bone mineral density (BMD) of femurs. The body weight of the 125-ng/kg TCDD group was significantly decreased relative to control and there was also a significant reduction in absolute and relative ovarian weights. Expressions of selenium binding protein 2, glutathione S-transferase mu type 3, Lrpap1 protein, NADPH, and peptidylprolyl isomerase D were upregulated, while prohibitin and N-ethylmaleimide-sensitive factor expression levels were downregulated. Data provide further insight into the mechanisms by which TCDD disrupts ovarian function by indicating which differential protein expressions following low-dose TCDD exposure
Thermodynamic properties, multiphase gas, and AGN feedback in a large sample of giant ellipticals
We present a study of the thermal structure of the hot X-ray emitting
atmospheres for a sample of 49 nearby X-ray and optically bright elliptical
galaxies using {\it Chandra} X-ray data. We focus on the connection between the
properties of the hot X-ray emitting gas and the cooler H+[NII]
emitting phase, and the possible role of the latter in the AGN (Active Galactic
Nuclei) feedback cycle. We do not find evident correlations between the
H+[NII] emission and global properties such as X-ray luminosity, mass
of hot gas, and gas mass fraction. We find that the presence of H+[NII]
emission is more likely in systems with higher densities, lower entropies,
shorter cooling times, shallower entropy profiles, lower values of min(), and disturbed X-ray morphologies (linked to turbulent
motions). However, we see no clear separations in the observables obtained for
galaxies with and without optical emission line nebulae. The AGN jet powers of
the galaxies with X-ray cavities show hint of a possible weak positive
correlation with their H+[NII] luminosities. This correlation and the
observed trends in the thermodynamic properties may result from chaotic cold
accretion (CCA) powering AGN jets, as seen in some high-resolution hydrodynamic
simulations.Comment: Published in MNRA
Multi-nanolayered VO2/Sapphire Thin Film via Spinodal Decomposition
Abstract Coating of VO2-based thin film has been extensively studied for fabricating energy-saving smart windows. One of the most efficient ways for fabricating high performance films is to create multi-nanolayered structure. However, it has been highly challenge to make such layers in the VO2-based films using conventional methods. In this work, a facile two-step approach is established to fabricate multilayered VO2-TiO2 thin films. We first deposited the amorphous thin films upon sputtering, and then anneal them to transform the amorphous phase into alternating Ti- and V-rich multilayered nanostructure via a spinodal decomposition mechanism. In particular, we take advantage of different sapphire substrate planes (A-plane (11–20), R-plane (1–102), C-plane (0001), and M-plane (10-10)) to achieve different decomposition modes. The new approach has made it possible to tailoring the microstructure of the thin films for optimized performances by controlling the disorder-order transition in terms of both kinetic and thermodynamic aspects. The derived thin films exhibit superior optical modulation upon phase transition, significantly reduced transition temperature and hysteresis loop width, and high degradation resistance, these improvements indicate a high potential to be used for fabricating the next generation of energy saving smart windows
Exceptionally Slow Rise in Differential Reflectivity Spectra of Excitons in GaN: Effect of Excitation-induced Dephasing
Femtosecond pump-probe (PP) differential reflectivity spectroscopy (DRS) and
four-wave mixing (FWM) experiments were performed simultaneously to study the
initial temporal dynamics of the exciton line-shapes in GaN epilayers. Beats
between the A-B excitons were found \textit{only for positive time delay} in
both PP and FWM experiments. The rise time at negative time delay for the
differential reflection spectra was much slower than the FWM signal or PP
differential transmission spectroscopy (DTS) at the exciton resonance. A
numerical solution of a six band semiconductor Bloch equation model including
nonlinearities at the Hartree-Fock level shows that this slow rise in the DRS
results from excitation induced dephasing (EID), that is, the strong density
dependence of the dephasing time which changes with the laser excitation
energy.Comment: 8 figure
Studies of the electric dipole transitions of deformed rare-earth nuclei
Spectrum and electric dipole transition rates and relative intensities in
Sm, Gd, Dy are studied in the framework of
the interacting boson model with s,p,d,f bosons. It is found that E1 transition
data among the low-lying levels are in good agreement with the SU(3) dynamical
symmetry of the spdf interacting boson model proposed by Engel and Iachello to
describe collective rotation with octupole vibration. These results show that
these nuclei have SU(3) dynamic symmetry to a good approximation. Also in this
work many algebraic expressions for electric dipole transitions in the SU(3)
limit of the spdf-IBM have been obtained. These formulae together with the
formulae given previously exhaust nearly all the E1 transitions for low-lying
negative parity states. They are useful in analyzing experimental data.Comment: 26 pages, 1 figur
An efficient non-Lambertian organic light-emitting diode using imprinted submicron-size zinc oxide pillar arrays
We report phosphorescent organic light-emitting diodes with a substantially improved light outcoupling efficiency and a wider angular distribution through applying a layer of zinc oxide periodic nanopillar arrays by pattern replication in non-wetting templates technique. The devices exhibited the peak emission intensity at an emission angle of 40° compared to 0° for reference device using bare ITO-glass. The best device showed a peak luminance efficiency of 95.5 ± 1.5 cd/A at 0° emission (external quantum efficiency - EQE of 38.5 ± 0.1%, power efficiency of 127 ± 1 lm/W), compared to that of the reference device, which has a peak luminance efficiency of 68.0 ± 1.4 cd/A (EQE of 22.0 ± 0.1%, power efficiency of 72 ± 1 lm/W). © 2013 American Institute of Physics
c-Axis Transport and Resistivity Anisotropy of Lightly- to Moderately-Doped La_{2-x}Sr_{x}CuO_{4} Single Crystals: Implications on the Charge Transport Mechanism
Both the in-plane and the out-of-plane resistivities (\rho_{ab} and \rho_{c})
are measured in high-quality La_{2-x}Sr_{x}CuO_{4} (LSCO) single crystals in
the lightly- to moderately-doped region, x = 0.01 to 0.10, and the resistivity
anisotropy is determined. In all the samples studied, the anisotropy ratio \rho
_{c}/\rho_{ab} quickly increases with decreasing temperature, although in
non-superconducting samples the strong localization effect causes \rho
_{c}/\rho_{ab} to decrease at low temperatures. Most notably, it is found that
\rho_{c}/\rho_{ab} at moderate temperatures (100 - 300 K) is almost completely
independent of doping in the non-superconducting regime (x = 0.01 to 0.05);
this indicates that the same charge confinement mechanism that renormalizes the
c-axis hopping rate is at work down to x = 0.01. It is discussed that this
striking x-independence of \rho_{c}/\rho_{ab} is consistent with the idea that
holes form a self-organized network of hole-rich regions, which also explains
the unusually metallic in-plane transport of the holes in the lightly-doped
region. Furthermore, the data for x > 0.05 suggest that the emergence of the
superconductivity is related to an increase in the c-axis coupling.Comment: 7 pages, 5 figures, submitted to Phys. Rev.
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
A Measurement of Psi(2S) Resonance Parameters
Cross sections for e+e- to hadons, pi+pi- J/Psi, and mu+mu- have been
measured in the vicinity of the Psi(2S) resonance using the BESII detector
operated at the BEPC. The Psi(2S) total width; partial widths to hadrons,
pi+pi- J/Psi, muons; and corresponding branching fractions have been determined
to be Gamma(total)= (264+-27) keV; Gamma(hadron)= (258+-26) keV, Gamma(mu)=
(2.44+-0.21) keV, and Gamma(pi+pi- J/Psi)= (85+-8.7) keV; and Br(hadron)=
(97.79+-0.15)%, Br(pi+pi- J/Psi)= (32+-1.4)%, Br(mu)= (0.93+-0.08)%,
respectively.Comment: 8 pages, 6 figure
Measurements of the Mass and Full-Width of the Meson
In a sample of 58 million events collected with the BES II detector,
the process J/ is observed in five different decay
channels: , , (with ), (with
) and . From a combined fit of all five
channels, we determine the mass and full-width of to be
MeV/ and
MeV/.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.
- …