401 research outputs found
Numerical Simulation Study for Water Breakthrough Law of Horizontal Well in Edge Water Reservoir
There are abundant research achievements for water breakthrough law of horizontal well in bottom water reservoir, but fewer in edge water at home and abroad. BZ Oilfield of Bohai Bay has characteristics of active edge water, well pattern of directional and horizontal wells. At present, there is a lack of understanding of water breakthrough law of horizontal well in edge water reservoir. The paper established a method considering permeability heterogeneity for identifying water breakthrough position of horizontal well in edge water reservoir by using numerical simulation. It has proved that this method is feasible and reliable in BZ Oilfield. Combined with WI decision in breakthrough, put forward some measures for stabilizing oil production and water control, guided the implementation of oilfield measures and stable production
Reproducibility and Discriminability of Brain Patterns of Semantic Categories Enhanced by Congruent Audiovisual Stimuli
One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI) experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: “old people” and “young people.” These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG). The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration
Exploring potential predictive biomarkers through historical perspectives on the evolution of systemic therapies into the emergence of neoadjuvant therapy for the treatment of hepatocellular carcinoma
Hepatocellular carcinoma (HCC), a type of liver cancer, ranks as the sixth most prevalent cancer globally and represents the third leading cause of cancer-related deaths. Approximately half of HCC patients miss the opportunity for curative treatment and are then limited to undergoing systemic therapies. Currently, systemic therapy has entered the era of immunotherapy, particularly with the advent of immune-checkpoint inhibitors (ICIs), which have significantly enhanced outcomes for patients with advanced HCC. Neoadjuvant treatment for HCC has become a possibility—findings from the IMbrave 050 trial indicated that ICIs offer the benefit of recurrence-free survival for high-risk HCC patients post-resection or local ablation. However, only a small fraction of individuals benefit from systemic therapy. Consequently, there is an urgent need to identify predictive biomarkers for treatment response and outcome assessment. This study reviewed the historical progression of systemic therapy for HCC, highlighting notable therapeutic advancements. This study examined the development of systemic therapies involving conventional drugs and clinical trials utilized in HCC treatment, as well as potential predictive biomarkers for advanced and/or locally advanced HCC. Various studies have revealed potential biomarkers in the context of HCC treatment. These include the association of dendritic cells (DCs) with a favorable response to neoadjuvant therapy, the presence of enriched T effector cells and tertiary lymphoid structures, the identification of CD138+ plasma cells, and distinct spatial arrangements of B cells in close proximity to T cells among responders with locally advanced HCC receiving neoadjuvant cabozantinib and nivolumab treatment. Furthermore, pathological response has been associated with intratumoral cellular triads consisting of progenitor CD8+ T cells and CXCL13+ CD4+ T helper cells surrounding mature DCs in patients receiving neoadjuvant cemiplimab for resectable HCC. Despite no widely recognized predictive biomarkers for HCC individualized treatment, we believe neoadjuvant trials hold the most promise in identifying and validating them. This is because they can collect multiple samples from resectable HCC patients across stages, especially with multi-omics, bridging preclinical and clinical gaps
Enhanced thermoelectric transport properties of La0.98Sr0.02CoO3-BiCuSeO composite
We report a facile method to enhance the thermoelectric efficiency of La0.98Sr0.02CoO3 by introducing BiCuSeO as a secondary phase with ultra-low thermal conductivity. Inclusion of secondary phase results in reducing the total thermal conductivity by suppressing the lattice and electronic thermal conductivities and also contributes to enhancement in the Seebeck coefficient. The wide grain size distribution of La0.98Sr0.02CoO3-BiCuSeO composite facilitates in breaking the interlinked transport properties through increased scattering of different wavelength phonons. The combined effect of enhanced Seebeck coefficient and ultra-low thermal conductivity, results in an improved ZT value of 0.07 at 923 K. The proposed strategy can be opted for improvement in the thermoelectric efficiency of other thermoelectric materials as well
Ten issues of NetGPT
With the rapid development and application of foundation models (FMs), it is
foreseeable that FMs will play an important role in future wireless
communications. As current Artificial Intelligence (AI) algorithms applied in
wireless networks are dedicated models that aim for different neural network
architectures and objectives, drawbacks in aspects of generality, performance
gain, management, collaboration, etc. need to be conquered. In this paper, we
define NetGPT (Network Generative Pre-trained Transformer) -- the foundation
models for wireless communications, and summarize ten issues regarding design
and application of NetGPT
Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice.
MTOR (mechanistic target of rapamycin) is a widely recognized integrator of signals and pathways key for cellular metabolism, proliferation, and differentiation. Here we show that conditional knockout (cKO) of Mtor in either primordial or growing oocytes caused infertility but differentially affected oocyte quality, granulosa cell fate, and follicular development. cKO of Mtor in nongrowing primordial oocytes caused defective follicular development leading to progressive degeneration of oocytes and loss of granulosa cell identity coincident with the acquisition of immature Sertoli cell-like characteristics. Although Mtor was deleted at the primordial oocyte stage, DNA damage accumulated in oocytes during their later growth, and there was a marked alteration of the transcriptome in the few oocytes that achieved the fully grown stage. Although oocyte quality and fertility were also compromised when Mtor was deleted after oocytes had begun to grow, these occurred without overtly affecting folliculogenesis or the oocyte transcriptome. Nevertheless, there was a significant change in a cohort of proteins in mature oocytes. In particular, down-regulation of PRC1 (protein regulator of cytokinesis 1) impaired completion of the first meiotic division. Therefore, MTOR-dependent pathways in primordial or growing oocytes differentially affected downstream processes including follicular development, sex-specific identity of early granulosa cells, maintenance of oocyte genome integrity, oocyte gene expression, meiosis, and preimplantation developmental competence. Proc Natl Acad Sci U S A 2018 Jun 5; 115(23):E5326-E5333
Infinite Lifetime of Underwater Superhydrophobic States
Submerged superhydrophobic (SHPo) surfaces are well known to transition from the dewetted to wetted state over time. Here, a theoretical model is applied to describe the depletion of trapped air in a simple trench and rearranged to prescribe the conditions for infinite lifetime. By fabricating a microscale trench in a transparent hydrophobic material, we directly observe the air depletion process and verify the model. The study leads to the demonstration of infinite lifetime (>50 days) of air pockets on engineered microstructured surfaces under water for the first time. Environmental fluctuations are identified as the main factor behind the lack of a long-term underwater SHPo state to date
Genomics of post-bottleneck recovery in the northern elephant seal.
Populations and species are threatened by human pressure, but their fate is variable. Some depleted populations, such as that of the northern elephant seal (Mirounga angustirostris), recover rapidly even when the surviving population was small. The northern elephant seal was hunted extensively and taken by collectors between the early 1800s and 1892, suffering an extreme population bottleneck as a consequence. Recovery was rapid and now there are over 200,000 individuals. We sequenced 260 modern and 8 historical northern elephant seal nuclear genomes to assess the impact of the population bottleneck on individual northern elephant seals and to better understand their recovery. Here we show that inbreeding, an increase in the frequency of alleles compromised by lost function, and allele frequency distortion, reduced the fitness of breeding males and females, as well as the performance of adult females on foraging migrations. We provide a detailed investigation of the impact of a severe bottleneck on fitness at the genomic level and report on the role of specific gene systems. [Abstract copyright: © 2024. The Author(s).
Особенности структуры живого напочвенного покрова и биологической активности лесных почв в условиях урбанизации
Branched octahydro-indenes were first synthesized with methyl isobutyl ketone (MIBK) and methyl benzaldehyde, which can be obtained from lignocellulose. Initially, C-14 oxygenates were prepared by the aldol condensation reaction of MIBK with methyl benzaldehydes. K2CO3/Al2O3 exhibited the highest activity among the studied solid base catalysts. On the basis of the characterizations, the outstanding activity of K2CO3/Al2O3 was comprehended, because this material has a relatively higher surface area and a larger base site concentration. Subsequently, the aldol condensation products were converted to branched octahydro-indene by hydrodeoxygenation over a Pt/C catalyst. This method is also applicable for the manufacture of C-11-C-13 polycycloalkanes with methyl benzaldehyde and other lignocellulosic ketones. According to our measurements, the polycycloalkanes obtained in this work have low freezing points (227.7 similar to 240.0 K) and high densities (0.857 similar to 0.944 g mL(-1)). Consequently, they may potentially be utilized to raise the volumetric heat values and/or the thermal stability of jet fuels
- …