111 research outputs found

    The star formation histories of early-type galaxies: insights from the rest-frame ultra-violet

    Get PDF
    Our current understanding of the star formation histories of early-type galaxies is reviewed, in the context of recent observational studies of their ultra-violet (UV) properties. Combination of UV and optical spectro-photometric data indicates that the bulk of the stellar mass in the early-type population forms at high redshift (z > 2), typically over short timescales (< 1 Gyr). Nevertheless, early-types of all luminosities form stars over the lifetime of the Universe, with most luminous (-23 < M(V) < -21) systems forming 10-15% of their stellar mass after z = 1 (with a scatter to higher value), while their less luminous (M(V) > -21) counterparts form 30-60% of their mass in the same redshift range. The large scatter in the (rest-frame) UV colours in the redshift range 0 < z < 0.7 indicates widespread low-level star formation in the early-type population over the last 8 billion years. The mass fraction of young (< 1 Gyr old) stars in luminous early-type galaxies varies between 1% and 6% at z~0 and is in the range 5-13% at z~0.7. The intensity of recent star formation and the bulk of the UV colour distribution is consistent with what might be expected from minor mergers (mass ratios < 1:6) in an LCDM cosmology.Comment: Brief Review, Mod. Phys. Lett.

    AGN in dwarf galaxies: frequency, triggering processes and the plausibility of AGN feedback

    Get PDF
    © 2019 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical SocietyWhile active galactic nuclei (AGN) are considered to be key drivers of the evolution of massive galaxies, their potentially significant role in the dwarf-galaxy regime (M ∗ < 10 9 M ⊙) remains largely unexplored. We combine optical and infrared data, from the Hyper Suprime-Cam (HSC) and the Wide-field Infrared Explorer, respectively, to explore the properties of ∼800 AGN in dwarfs at low redshift (z < 0.3). Infrared-selected AGN fractions are ∼10-30 per cent in dwarfs, which, for reasonable duty cycles, indicates a high black hole (BH)-occupation fraction. Visual inspection of the deep HSC images indicates that the merger fraction in dwarf AGN (∼6 per cent) shows no excess compared to a control sample of non-AGN, suggesting that the AGN-triggering processes are secular in nature. Energetic arguments indicate that, in both dwarfs and massive galaxies, bolometric AGN luminosities (L AGN) are significantly greater than supernova luminosities (L SN). L AGN/L SN is, in fact, higher in dwarfs, with predictions from simulations suggesting that this ratio only increases with redshift. Together with the potentially high BH-occupation fraction, this suggests that if AGN feedback is an important driver of massive-galaxy evolution, the same is likely to be true in the dwarf regime, contrary to our classical thinking.Peer reviewedFinal Published versio

    Morphology in the Era of Large Surveys

    Get PDF
    The study of galaxies has changed dramatically over the past few decades with the advent of large-scale astronomical surveys. These large collaborative efforts have made available high-quality imaging and spectroscopy of hundreds of thousands of systems, providing a body of observations which has significantly enhanced our understanding not only of cosmology and large-scale structure in the universe but also of the astrophysics of galaxy formation and evolution. Throughout these changes, one thing that has remained constant is the role of galaxy morphology as a clue to understanding galaxies. But obtaining morphologies for large numbers of galaxies is challenging; this topic, "Morphology in the era of large surveys", was the subject of a recent discussion meeting at the Royal Astronomical Society, and this "Astronomy and Geophysics" article is a report on that meeting.Comment: Meeting Report article published in the October 2013 issue of the Royal Astronomical Society journal Astronomy and Geophysics. 4 page pdf with colour image

    How the spectral energy distribution and galaxy morphology constrain each other, with application to morphological selection using galaxy colours

    Get PDF
    © 2022 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.We introduce an empirical methodology to study how the spectral energy distribution (SED) and galaxy morphology constrain each other and implement this on 8000 galaxies from the HST CANDELS survey in the GOODS-South field. We show that the SED does constrain morphology and present a method that quantifies the strength of the link between these two quantities. Two galaxies with very similar SEDs are around three times more likely to also be morphologically similar, with SED constraining morphology most strongly for relatively massive red ellipticals. We apply our methodology to explore likely upper bounds on the efficacy of morphological selection using colour. We show that, under reasonable assumptions, colour selection is relatively ineffective at separating homogeneous morphologies. Even with the use of up to six colours for morphological selection, the average purity in the resultant morphological classes is only around 60 per cent. While the results can be improved by using the whole SED, the gains are not significant, with purity values remaining around 70 per cent or below.Peer reviewedFinal Published versio

    Identifying the progenitor set of present-day early-type galaxies: a view from the standard model

    Get PDF
    We present a comprehensive theoretical study, using a semi-analytical model within the standard LCDM framework, of the photometric properties of the progenitors of present-day early-type galaxies in the redshift range 0<z<1. We explore progenitors of all morphologies and study their characteristics as a function of the luminosity and local environment of the early-type remnant at z=0. In agreement with previous studies, we find that, while larger early-types are generally assembled later, their luminosity-weighted stellar ages are typically older. In dense cluster-like environments, 70% of early-type systems are `in place' by z=1 and evolve without interactions thereafter, while in the field the corresponding value is 30%. Averaging across all environments at z~1, less than 50% of the stellar mass which ends up in early-types today is actually in early-type progenitors at this redshift, in agreement with recent observational work. We develop probabilistic prescriptions which provide a means of including spiral (i.e. non early-type) progenitors at intermediate and high redshifts, based on their luminosity and optical colours. For example, we find that, at intermediate redshifts (z~0.5), large (M_V0.7) spirals have 75-95% chance of being an early-type progenitor, while the corresponding probability for large blue spirals (M_B<-21.5, B-V<0.7) is 50-75%. The prescriptions developed here can be used to address, from the perspective of the standard model, the issue of `progenitor bias', whereby the exclusion of late-type progenitors in observational studies can lead to inaccurate conclusions regarding the evolution of the early-type population over cosmic time. (abridged)Comment: Published in A&A, 2009, 503, 445. The article can be downloaded at: http://adsabs.harvard.edu/abs/2009A%26A...503..445

    The Role of Environment on the Formation of Early-Type Galaxies

    Get PDF
    (Abridged) We present a detailed study of the stellar populations of a volume-limited sample of early-type galaxies from SDSS, across a range of environments -- defined as the mass of the host dark matter halo. The stellar populations are explored through the SDSS spectra, via projection onto a set of two spectral vectors determined from Principal Component Analysis. We find the velocity dispersion of the galaxy to be the main driver behind the different star formation histories of early-type galaxies. However, environmental effects are seen to play a role (although minor). Galaxies populating the lowest mass halos have stellar populations on average ~1Gyr younger than the rest of the sample. The fraction of galaxies with small amounts of recent star formation is also seen to be truncated when occupying halos more massive than 3E13Msun. The sample is split into satellite and central galaxies for a further analysis of environment. Satellites are younger than central galaxies of the same stellar mass. The younger satellite galaxies in 6E12Msun halos have stellar populations consistent with the central galaxies found in the lowest mass halos of our sample (i.e. 1E12Msun). This result is indicative of galaxies in lower mass halos being accreted into larger halos.Comment: 11 pages, 10 figures. Accepted for publication in MNRA

    The rise and fall of stellar discs across the peak of cosmic star formation history: mergers versus smooth accretion

    Full text link
    Building galaxy merger trees from a state-of-the-art cosmological hydrodynamics simulation, Horizon-AGN, we perform a statistical study of how mergers and smooth accretion drive galaxy morphologic properties above z>1z > 1. More specifically, we investigate how stellar densities, effective radii and shape parameters derived from the inertia tensor depend on mergers of different mass ratios. We find strong evidence that smooth accretion tends to flatten small galaxies over cosmic time, leading to the formation of disks. On the other hand, mergers, and not only the major ones, exhibit a propensity to puff up and destroy stellar disks, confirming the origin of elliptical galaxies. We also find that elliptical galaxies are more susceptible to grow in size through mergers than disc galaxies with a size-mass evolution r \prop M^{1.2} instead of r \prop M^{-0.5} - M^{0.5} depending on the merger mass ratio. The gas content drive the size-mass evolution due to merger with a faster size growth for gas-poor galaxies r \prop M^2 than for gas-rich galaxies r \prop M.Comment: 16 pages, 19 figures, submitted to MNRA

    Eigengalaxies: describing galaxy morphology using principal components in image space

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical SocietyWe demonstrate how galaxy morphologies can be represented by weighted sums of "eigengalaxies" and how eigengalaxies can be used in a probabilistic framework to enable principled and simplified approaches in a variety of applications. Eigengalaxies can be derived from a Principal Component Analysis (PCA) of sets of single- or multi-band images. They encode the image space equivalent of basis vectors that can be combined to describe the structural properties of large samples of galaxies in a massively reduced manner. As an illustration, we show how a sample of 10,243 galaxies in the Hubble Space Telescope CANDELS survey can be represented by just 12 eigengalaxies. We show in some detail how this image space may be derived and tested. We also describe a probabilistic extension to PCA (PPCA) which enables the eigengalaxy framework to assign probabilities to galaxies. We present four practical applications of the probabilistic eigengalaxy framework that are particularly relevant for the next generation of large imaging surveys: we (i) show how low likelihood galaxies make for natural candidates for outlier detection (ii) demonstrate how missing data can be predicted (iii) show how a similarity search can be performed on exemplars (iv) demonstrate how unsupervised clustering of objects can be implemented.Peer reviewe
    corecore