15 research outputs found

    An “Escape Clock” for Estimating the Turnover of SIV DNA in Resting CD4+ T Cells

    Get PDF
    Persistence of HIV DNA presents a major barrier to the complete control of HIV infection under current therapies. Most studies suggest that cells with latently integrated HIV decay very slowly under therapy. However, it is much more difficult to study the turnover and persistence of HIV DNA during active infection. We have developed an “escape clock” approach for measuring the turnover of HIV DNA in resting CD4+ T cells. This approach studies the replacement of wild-type (WT) SIV DNA present in early infection by CTL escape mutant (EM) strains during later infection. Using a strain-specific real time PCR assay, we quantified the relative amounts of WT and EM strains in plasma SIV RNA and cellular SIV DNA. Thus we can track the formation and turnover of SIV DNA in sorted resting CD4+ T cells. We studied serial plasma and PBMC samples from 20 SIV-infected Mane-A*10 positive pigtail macaques that have a signature Gag CTL escape mutation. In animals with low viral load, WT virus laid down early in infection is extremely stable, and the decay of this WT species is very slow, consistent with findings in subjects on anti-retroviral medications. However, during active, high level infection, most SIV DNA in resting cells was turning over rapidly, suggesting a large pool of short-lived DNA produced by recent infection events. Our results suggest that, in order to reduce the formation of a stable population of SIV DNA, it will be important either to intervene very early or intervene during active replication

    Population pharmacokinetics of indinavir alone and in combination with ritonavir in HIV-1-infected patients

    No full text
    Aims The aim of the study was to characterize the population pharmacokinetics of indinavir, define the relationship between the pharmacokinetics of indinavir and ritonavir, and to identify the factors influencing the pharmacokinetics of indinavir alone or when given with ritonavir. Methods HIV-1-infected patients being treated with an indinavir-containing regimen were included. During regular visits, 102 blood samples were collected for the determination of plasma indinavir and ritonavir concentrations. Full pharmacokinetic curves were available from 45 patients. Concentrations of indinavir and ritonavir were determined by liquid chromatography coupled with electrospray tandem mass spectrometry. Pharmacokinetic analysis was performed using nonlinear mixed effect modelling (NONMEM). Results The disposition of indinavir was best described by a single compartment model with first order absorption and elimination. Values for the clearance, volume of distribution and the absorption rate constant were 46.8 l h(-1) (24.2% IIV), 82.3 l (24.6% IIV) and 02.62 h(-1), respectively. An absorption lag-time of 0.485 h was detected in patients also taking ritonavir. Furthermore this drug, independent of dose (100-400 mg) or plasma concentration, decreased the clearance of indinavir by 64.6%. In contrast, co-administration of efavirenz or nevirapine increased the clearance of indinavir by 41%, irrespective of the presence or absence of ritonavir. Female patients had a 48% higher apparent bioavailability of indinavir than males. Conclusions The pharmacokinetic parameters of indinavir were adequately described by our population model. Female gender and concomitant use of ritonavir and non-nucleoside reverse transcriptase inhibitors strongly influenced the pharmacokinetics of this drug. The results support the concept of ritonavir boosting, maximum inhibition of indinavir metabolized being observed at 100 m

    Pharmacokinetics of Antiretrovirals in Genital Secretions and Anatomic Sites of HIV Transmission: Implications for HIV Prevention

    No full text
    The incidence of HIV remains alarmingly high in many parts of the world. Prophylactic use of antiretrovirals, capable of concentrating in the anatomical sites of transmission, may reduce the risk of infection after an unprotected sexual exposure. To date, orally and topically administered antiretrovirals have exhibited variable success in preventing HIV transmission in large-scale clinical trials. Antiretroviral mucosal pharmacokinetics may help explain the outcomes of these investigations. Penetration and accumulation of antiretrovirals into sites of transmission can influence dosing strategies and pre-exposure prophylaxis clinical trial design. Antiretroviral tissue distribution varies widely within and between drug classes, attributed in part to their physicochemical properties and tissue-specific drug transporter expression. Nucleoside (-tide) reverse transcriptase inhibitors, the CCR5 antagonist maraviroc, and the integrase inhibitor raltegravir demonstrate the highest penetration into the male and female reproductive tracts and colorectal tissue relative to blood. This review will describe antiretroviral exposure in anatomic sites of transmission, and place these findings in context with the prevention of HIV and the efficacy of pre-exposure prophylactic strategies
    corecore