713 research outputs found
Drying of complex suspensions
We investigate the 3D structure and drying dynamics of complex mixtures of
emulsion droplets and colloidal particles, using confocal microscopy. Air
invades and rapidly collapses large emulsion droplets, forcing their contents
into the surrounding porous particle pack at a rate proportional to the square
of the droplet radius. By contrast, small droplets do not collapse, but remain
intact and are merely deformed. A simple model coupling the Laplace pressure to
Darcy's law correctly estimates both the threshold radius separating these two
behaviors, and the rate of large-droplet evacuation. Finally, we use these
systems to make novel hierarchical structures.Comment: 4 pages, 4 figure
Strong and ductile platelet-reinforced polymer films inspired by nature: Microstructure and mechanical properties
The unique structure and mechanical properties of platelet-reinforced biological materials such as bone and seashells have motivated the development of artificial composites exhibiting new, unusual mechanical behavior. On the basis of designing principles found in these biological structures, we combined high-performance artificial building blocks to fabricate platelet-reinforced polymer matrix composites that exhibit simultaneously high tensile strength and ductility. The mechanical properties are correlated with the underlying microstructure of the composites before and after mechanical loading using transmission electron microscopy. The critical role of the strength of the platelet-polymer interface and its dependence on the platelet surface chemistry and the type of matrix polymer are studied. Thin multilayered films with highly oriented platelets were produced through the bottom-up layer-by-layer assembly of submicrometer-thin alumina platelets and either polyimide or chitosan as polymer matrix. The tensile strength and strain at rupture of the prepared composites exceeded that of nacre, whereas the elastic modulus reached values similar to that of lamellar bones. In contrast to the brittle failure of clay-reinforced composites of similar or higher strength and stiffness, our composites exhibit plastic deformation in the range of 2-90% before failure. In addition to the high reinforcing efficiency and ductility achieved, several toughening mechanisms were identified in fractured composites, namely friction, debonding, and formation of microcracks at the platelet-polymer interface, as well as plastic deformation and void formation within the continuous polymeric phase. The combination of high strength, ductility, and toughness was achieved by selecting platelets that exhibit an aspect ratio high enough to carry significant load but small enough to allow for fracture under the platelet pull-out mode. At high concentrations of platelets, the ductility gets lost because of out-of-plane misalignment of the platelets and incorporation of voids in the microstructure during processing. The designing principles applied in this study can potentially be extended to other types of platelets and polymers to obtain new, hybrid materials with tunable mechanical propertie
Responsive microcapsules from complex emulsions
Engineered microcompartments and capsules that respond to multiple external stimuli and partly replicate key features of the fascinating dynamic response of living cells have attracted growing interest in academia and industry. In this talk, I will present our efforts to create a library of chemically- and mechanically-responsive microcompartments that are able to release cargo molecules on-demand through different triggering mechanisms. To obtain microcapsules with unprecedented functionalities, we use complex emulsions made in microfluidic devices as soft templates. Conversion of soft double emulsions into functional microcapsules is accomplished by a polymerization reaction or dissolution of the oil phase into the continuous medium, thus generating polymer-based compartments or colloidosomes with predictable size, shell thickness, mechanical behavior and shell microstructure. The resulting microcapsules can be designed to undergo one-time release or can be made sufficiently robust to enable multiple release events without impairing the compartment’s mechanical integrity. Release is triggered by a variety of external stimuli, including pH, temperature or magnetic fields. Proof-of-concept experiments are shown to illustrate the potential of these microcompartments in modifying on-demand the mechanical response of organic or inorganic matrices in capsule-loaded composite materials
Inhomogeneous broadening of tunneling conductance in double quantum wells
The lineshape of the tunneling conductance in double quantum wells with a
large-scale roughness of heterointerfaces is investigated. Large-scale
variations of coupled energy levels and scattering due to the short-range
potential are taken into account. The interplay between the inhomogeneous
broadening, induced by the non-screened part of large-scale potential, and the
homogeneous broadening due to the scattering by short-range potentials is
considered. It is shown that the large inhomogeneous broadening can be strongly
modified by nonlocal effects involved in the proposed mechanism of
inhomogeneity. Related change of lineshape of the resonant tunneling
conductance between Gaussian and Lorentzian peaks is described. The theoretical
results agree quite well with experimental data.Comment: 11 pages, 5 figure
Coupled phonon-ripplon modes in a single wire of electrons on the liquid-helium surface
The coupled phonon-ripplon modes of the quasi-one-dimensional electron chain
on the liquid helium sutface are studied. It is shown that the electron-ripplon
coupling leads to the splitting of the collective modes of the wire with the
appearance of low-frequency modes and high-frequency optical modes starting
from threshold frequencies. The effective masses of an electron plus the
associated dimple for low frequency modes are estimated and the values of the
threshold frequencies are calculated. The results obtained can be used in
experimental attempts to observe the phase transition of the electron wire into
a quasi-ordered phase.Comment: 5 pages, 1 figure, Physical Review (in press
Intersubband plasmons in quasi-one-dimensional electron systems on a liquid helium surface
The collective excitation spectra are studied for a multisubband
quasi-one-dimensional electron gas on the surface of liquid helium. Different
intersubband plasmon modes are identified by calculating the spectral weight
function of the electron gas within a 12 subband model. Strong intersubband
coupling and depolarization shifts are found. When the plasmon energy is close
to the energy differences between two subbands, Landau damping in this finite
temperature system leads to plasmon gaps at small wavevectors.Comment: To be published as a Rapid Communication in Phys. Rev.
Polaron effects in electron channels on a helium film
Using the Feynman path-integral formalism we study the polaron effects in
quantum wires above a liquid helium film. The electron interacts with
two-dimensional (2D) surface phonons, i.e. ripplons, and is confined in one
dimension (1D) by an harmonic potential. The obtained results are valid for
arbitrary temperature (), electron-phonon coupling strength (), and
lateral confinement (). Analytical and numerical results are
obtained for limiting cases of , , and . We found the
surprising result that reducing the electron motion from 2D to quasi-1D makes
the self-trapping transition more continuous.Comment: 6 pages, 7 figures, submitted to Phys. Rev.
Hidden spin-current conservation in 2d Fermi liquids
We report the existence of regimes of the two dimensional Fermi liquid that
show unusual conservation of the spin current and may be tuned by varying some
parameter like the density of fermions. We show that for reasonable models of
the effective interaction the spin current may be conserved in general in 2d,
not only for a particular regime. Low temperature spin waves propagate
distinctively in these regimes and entirely new ``spin-acoustic'' modes are
predicted for scattering-dominated temperature ranges. These new
high-temperature propagating spin waves provide a clear signature for the
experimental search of such regimes.Comment: 4 pages, no figures, revised version, accepted for pub. in the PR
- …
