9,813 research outputs found

    Parallel algorithm for determining motion vectors in ice floe images by matching edge features

    Get PDF
    A parallel algorithm is described to determine motion vectors of ice floes using time sequences of images of the Arctic ocean obtained from the Synthetic Aperture Radar (SAR) instrument flown on-board the SEASAT spacecraft. Researchers describe a parallel algorithm which is implemented on the MPP for locating corresponding objects based on their translationally and rotationally invariant features. The algorithm first approximates the edges in the images by polygons or sets of connected straight-line segments. Each such edge structure is then reduced to a seed point. Associated with each seed point are the descriptions (lengths, orientations and sequence numbers) of the lines constituting the corresponding edge structure. A parallel matching algorithm is used to match packed arrays of such descriptions to identify corresponding seed points in the two images. The matching algorithm is designed such that fragmentation and merging of ice floes are taken into account by accepting partial matches. The technique has been demonstrated to work on synthetic test patterns and real image pairs from SEASAT in times ranging from .5 to 0.7 seconds for 128 x 128 images

    Motion detection in astronomical and ice floe images

    Get PDF
    Two approaches are presented for establishing correspondence between small areas in pairs of successive images for motion detection. The first one, based on local correlation, is used on a pair of successive Voyager images of the Jupiter which differ mainly in locally variable translations. This algorithm is implemented on a sequential machine (VAX 780) as well as the Massively Parallel Processor (MPP). In the case of the sequential algorithm, the pixel correspondence or match is computed on a sparse grid of points using nonoverlapping windows (typically 11 x 11) by local correlations over a predetermined search area. The displacement of the corresponding pixels in the two images is called the disparities to cubic surfaces. The disparities at points where the error between the computed values and the surface values exceeds a particular threshold are replaced by the surface values. A bilinear interpolation is then used to estimate disparities at all other pixels between the grid points. When this algorithm was applied at the red spot in the Jupiter image, the rotating velocity field of the storm was determined. The second method of motion detection is applicable to pairs of images in which corresponding areas can experience considerable translation as well as rotation

    ECoG-based short-range recurrent stimulation techniques to stabilize tissue at risk of progressive damage: Theory based on clinical observations

    Get PDF
    We introduce theoretical concepts based on chaos control to stabilize in acute stroke the tissue at risk of progressive damage by preventing adverse effects of waves of mass neuronal depolarization. Moreover, we present clinical electrocorticography (ECoG) recordings of relevant signals suggested for the feedback control. The recordings are performed in combination with novel subdural opto-electrode technology for simultaneous laser-Doppler flowmetry in patients with aneurysmal subarachnoid haemorrhage (aSAH). In aSAH patients waves of spreading depolarization (SD) have a high incidence and cause hypoxia in tissue at risk, and, importantly, the haemodynamic response is the inverse of that seen in healthy tissue. In previous clinical studies, clusters of prolonged SDs have been measured in aSAH patients in close proximity to structural brain damage as assessed by neuroimaging, and, in theoretical studies, a mechanism was presented, suggesting how a failure of internal feedback could be a putative mechanism of such SD cluster patterns in acute stroke. 

This failing internal feedback control is now suggested to be replaced by ECoG-based short-range recurrent functional stimulation that initiates the normal hyperperfusion haemodynamic response in a demand-controlled way and stabilizes the tissue at risk during the critical phase of SD passage. The suggested method has three key features: (i) it is short-range, i.e., in the order of the distance of the ECoG electrode strip, (ii) it is demand-controlled, and (iii) it uses no prior knowledge of the target state, in particular, it adapts to conditions in the healthy physiological range. On-demand type stimulation provides minimal invasive feedback as the control force is off when the target state is reached, i.e., the tissue at risk is without SD or it is back to the physiological range (out of risk). These last two features (ii-iii) are shared with classical methods of chaos control, where major progress was made in the last years with respect to extensions for spatio-temporal wave patterns. A detailed bifurcation analysis of the nonlinear model is presented, in particular, the SD cluster forming cortical state is suggested to be caused by a delay-induced saddle-node bifurcation.
&#xa

    Prospects For Detecting Dark Matter With GLAST In Light Of The WMAP Haze

    Full text link
    Observations by the WMAP experiment have identified an excess of microwave emission from the center of the Milky Way. It has previously been shown that this "WMAP Haze" could be synchrotron emission from relativistic electrons and positrons produced in the annihilations of dark matter particles. In particular, the intensity, spectrum and angular distribution of the WMAP Haze is consistent with an electroweak scale dark matter particle (such as a supersymmetric neutralino or Kaluza-Klein dark matter in models with universal extra dimensions) annihilating with a cross section on the order of sigma v~3x10^-26 cm^3/s and distributed with a cusped halo profile. No further exotic astrophysical or annihilation boost factors are required. If dark matter annihilations are in fact responsible for the observed Haze, then other annihilation products will also be produced, including gamma rays. In this article, we study the prospects for the GLAST satellite to detect gamma rays from dark matter annihilations in the Galactic Center region in this scenario. We find that by studying only the inner 0.1 degrees around the Galactic Center, GLAST will be able to detect dark matter annihilating to heavy quarks or gauge bosons over astrophysical backgrounds with 5sigma (3sigma) significance if they are lighter than approximately 320-500 GeV (500-750 GeV). If the angular window is broadened to study the dark matter halo profile's angular extension (while simultaneously reducing the astrophysical backgrounds), WIMPs as heavy as several TeV can be identified by GLAST with high significance. Only if the dark matter particles annihilate mostly to electrons or muons will GLAST be unable to identify the gamma ray spectrum associated with the WMAP Haze.Comment: 10 pages, 6 figure

    Simulations of cosmic ray propagation

    Full text link
    We review numerical methods for simulations of cosmic ray (CR) propagation on galactic and larger scales. We present the development of algorithms designed for phenomenological and self-consistent models of CR propagation in kinetic description based on numerical solutions of the Fokker-Planck equation. The phenomenological models assume a stationary structure of the galactic interstellar medium and incorporate diffusion of particles in physical and momentum space together with advection, spallation, production of secondaries and various radiation mechanisms. The self-consistent propagation models of CRs include the dynamical coupling of the CR population to the thermal plasma. The CR transport equation is discretized and solved numerically together with the set of magneto-hydrodynamic (MHD) equations in various approaches treating the CR population as a separate relativistic fluid within the two-fluid approach or as a spectrally resolved population of particles evolving in physical and momentum space. The relevant processes incorporated in self-consistent models include advection, diffusion and streaming well as adiabatic compression and several radiative loss mechanisms. We discuss applications of the numerical models for the interpretation of CR data collected by various instruments. We present example models of astrophysical processes influencing galactic evolution such as galactic winds, the amplification of large-scale magnetic fields and instabilities of the interstellar medium.Comment: 99 pages, 13 figures, to be published in the Living Reviews of Computational Astrophysic

    Diffuse Gamma Rays: Galactic and Extragalactic Diffuse Emission

    Full text link
    "Diffuse" gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived "average" spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.Comment: 32 pages, 28 figures, kapproc.cls. Chapter to the book "Cosmic Gamma-Ray Sources," to be published by Kluwer ASSL Series, Edited by K. S. Cheng and G. E. Romero. More details can be found at http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm

    The Distance to the Soft Gamma Repeater SGR 1627-41

    Get PDF
    We report millimeter observations of the line of sight to the recently discovered Soft Gamma Repeater, SGR 1627-41, which has been tentatively associated with the supernova remnant SNR G337.0-0.1 Among the eight molecular clouds along the line of sight to SGR 1627-41, we show that SNR G337.0-0.1 is probably interacting with one of the most massive giant molecular clouds (GMC) in the Galaxy, at a distance of 11 kpc from the sun. Based on the high extinction to the persistent X-ray counterpart of SGR 1627-41, we present evidence for an association of this new SGR with the SNR G337.0-0.1; they both appear to be located on the near side of the GMC. This is the second SGR located near an extraordinarily massive GMC. We suggest that SGR 1627-41 is a neutron star with a high transverse velocity (~ 1,000 \kms) escaping the young (~ 5,000 years) supernova remnant G337.0-0.1Comment: 17 pages, including 2 figures. Accepted for publication in the Astrophysical Journal Letter

    Socioeconomic deprivation, mortality and health of within-city migrants: a population cohort study.

    Get PDF
    BACKGROUND: Evidence linking selective migration (the situation where people in good health move from deprived to affluent areas, whilst people in poor health move in the opposite direction) within local areas to mortality is inconclusive. METHODS: Mortality in within-city migrants was examined using a Sheffield population cohort, adjusted for moves to care homes. The cohort comprised 310 894 people aged 25+ years in 2001 followed up for 9.18 years, with 42 252 (13.6%) deaths. Information on pre-existing medical conditions, socioeconomic indicators and smoking was available from a sample survey. RESULTS: Relative risks (95% CI) of mortality in migrants from deprived to affluent areas were lower compared with people remaining in deprived areas; 0.53 (0.42 to 0.65), 0.70 (0.61 to 0.80), 0.76 (0.68 to 0.86), 0.93 (0.88 to 1.00) and 0.98 (0.93 to 1.03) in the 25-44, 45-64, 65-74, 75-84 and 85+ year age bands, respectively. They also had lower prevalence ORs (95% CI) for bronchitis (0.59 (0.39 to 0.89)), asthma (0.70 (0.53 to 0.93)), depression (0.59 (0.38 to 0.94)), and were less likely to receive benefits (0.60 (0.47 to 0.76)) and less likely to smoke (0.66 (0.51 to 0.85)).Conversely, mortality relative risks in migrants from affluent to deprived areas were higher compared with people remaining in affluent areas; 1.71 (1.37 to 2.12), 1.59 (1.40 to 1.82), 1.44 (1.26 to 1.63), 1.18 (1.10 to 1.27) and 1.04 (1.00 to 1.09) in the corresponding age groups. They also had higher prevalence odds ratios for long-term illness (2.37 (1.71 to 3.29)), asthma (1.71 (1.25 to 2.35)), diabetes (3.03 (1.70 to 5.41)), depression (2.71 (1.74 to 4.21)), were more likely to receive benefits (2.25 (1.65 to 3.07)) and more likely to smoke (1.51 (1.12 to 2.05)). CONCLUSIONS: People moving from deprived to affluent areas had lower mortality and better health, and vice versa, especially in the younger age groups. This study provides strong evidence linking selective migration within local areas to mortality
    corecore