169 research outputs found

    XLMR in MRX families 29, 32, 33 and 38 results from the dup24 mutation in the ARX (Aristaless related homeobox) gene

    Get PDF
    BACKGROUND: X-linked mental retardation (XLMR) is the leading cause of mental retardation in males. Mutations in the ARX gene in Xp22.1 have been found in numerous families with both nonsyndromic and syndromic XLMR. The most frequent mutation in this gene is a 24 bp duplication in exon 2. Based on this fact, a panel of XLMR families linked to Xp22 was tested for this particular ARX mutation. METHODS: Genomic DNA from XLMR families linked to Xp22.1 was amplified for exon 2 in ARX using a Cy5 labeled primer pair. The resulting amplicons were sized using the ALFexpress automated sequencer. RESULTS: A panel of 11 families with X-linked mental retardation was screened for the ARX 24dup mutation. Four nonsyndromic XLMR families – MRX29, MRX32, MRX33 and MRX38 – were found to have this particular gene mutation. CONCLUSION: We have identified 4 additional XLMR families with the ARX dup24 mutation from a panel of 11 XLMR families linked to Xp22.1. This finding makes the ARX dup24 mutation the most common mutation in nonsyndromic XLMR families linked to Xp22.1. As this mutation can be readily tested for using an automated sequencer, screening should be considered for any male with nonsyndromic MR of unknown etiology

    2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine.</p> <p>Methods</p> <p>We report a four-year-old mentally retarded Somali boy with autism and a history of seizures, who was found to excrete increased amounts of 2-methylbutyryl glycine in the urine. The SBCAD gene was examined with sequence analysis. His development was assessed with psychometric testing before and after a trial with low protein diet.</p> <p>Results</p> <p>We found homozygosity for A > G changing the +3 position of intron 3 (c.303+3A > G) in the SBCAD gene. Psychometric testing showed moderate mental retardation and behavioral scores within the autistic spectrum. No beneficial effect was detected after 5 months with a low protein diet.</p> <p>Conclusion</p> <p>This mutation was also found in two previously reported cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD.</p

    YY1 haploinsufficiency causes an intellectual disability syndrome featuring transcriptional and chromatin dysfunction

    Get PDF
    Yin and yang 1 (YY1) is a well-known zinc-finger transcription factor with crucial roles in normal development and malignancy. YY1 acts both as a repressor and as an activator of gene expression. We have identified 23 individuals with de novo mutations or deletions of YY1 and phenotypic features that define a syndrome of cognitive impairment, behavioral alterations, intrauterine growth restriction, feeding problems, and various congenital malformations. Our combined clinical and molecular data define "YY1 syndrome" as a haploinsufficiency syndrome. Through immunoprecipitation of YY1-bound chromatin from affected individuals' cells with antibodies recognizing both ends of the protein, we show that YY1 deletions and missense mutations lead to a global loss of YY1 binding with a preferential retention at high-occupancy sites. Finally, we uncover a widespread loss of H3K27 acetylation in particular on the YY1-bound enhancers, underscoring a crucial role for YY1 in enhancer regulation. Collectively, these results define a clinical syndrome caused by haploinsufficiency of YY1 through dysregulation of key transcriptional regulators.Michele Gabriele, Anneke T. Vulto-van Silfhout, Pierre-Luc Germain, Alessandro Vitriolo, Raman Kumar, Evelyn Douglas, Eric Haan, Kenjiro Kosaki, Toshiki Takenouchi, Anita Rauch, Katharina Steindl, Eirik Frengen, Doriana Misceo, Christeen Ramane J. Pedurupillay, Petter Stromme, Jill A. Rosenfeld, Yunru Shao, William J. Craigen, Christian P. Schaaf, David Rodriguez-Buritica, Laura Farach, Jennifer Friedman, Perla Thulin, Scott D. McLean, Kimberly M. Nugent, Jenny Morton, Jillian Nicholl, Joris Andrieux, Asbjørg Stray-Pedersen, Pascal Chambon, Sophie Patrier, Sally A. Lynch, Susanne Kjaergaard, Pernille M. Tørring, Charlotte Brasch-Andersen, Anne Ronan, Arie van Haeringen, Peter J. Anderson, Zöe Powis, Han G. Brunner, Rolph Pfundt, Janneke H.M. Schuurs-Hoeijmakers, Bregje W.M. van Bon, Stefan Lelieveld, Christian Gilissen, Willy M. Nillesen, Lisenka E.L.M. Vissers, Jozef Gecz, David A. Koolen, Giuseppe Testa, Bert B.A. de Vrie

    Incidence rates of progressive childhood encephalopathy in Oslo, Norway: a population based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Progressive encephalopathy (PE) in children is a heterogeneous group of diseases mainly composed of metabolic diseases, but it consists also of neurodegenerative disorders where neither metabolic nor other causes are found. We wanted to estimate the incidence rate and aetiology of PE, as well as the age of onset of the disease.</p> <p>Methods</p> <p>We included PE cases born between 1985 and 2003, living in Oslo, and registered the number presenting annually between 1985 and 2004. Person-years at risk between 0 and 15 years were based on the number of live births during the observation period which was divided into four 5-year intervals. We calculated incidence rates according to age at onset which was classified as neonatal (0–4 weeks), infantile (1–12 months), late infantile (1–5 years), and juvenile (6–12 years).</p> <p>Results</p> <p>We found 84 PE cases representing 28 diagnoses among 1,305,997 person years, giving an incidence rate of 6.43 per 100,000 person years. The age-specific incidence rates per 100,000 were: 79.89 (<1 year), 8.64 (1–2 years), 1.90 (2–5 years), and 0.65 (>5 years). 66% (55/84) of the cases were metabolic, 32% (27/54) were neurodegenerative, and 2% (2/84) had HIV encephalopathy. 71% (60/84) of the cases presented at < 1 year, 24% (20/84) were late infantile presentations, and 5% (4/84) were juvenile presentations. Neonatal onset was more common in the metabolic (46%) (25/55) compared to the neurodegenerative group (7%) (2/27). 20% (17/84) of all cases were classified as unspecified neurodegenerative disease.</p> <p>Conclusion</p> <p>The overall incidence rate of PE was 6.43 per 100,000 person years. There was a strong reduction in incidence rates with increasing age. Two-thirds of the cases were metabolic, of which almost half presented in the neonatal period.</p

    MRX87 family with Aristaless X dup24bp mutation and implication for polyAlanine expansions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cognitive impairments are heterogeneous conditions, and it is estimated that 10% may be caused by a defect of mental function genes on the X chromosome. One of those genes is <it>Aristaless related homeobox </it>(<it>ARX</it>) encoding a polyA-rich homeobox transcription factor essential for cerebral patterning and its mutations cause different neurologic disorders. We reported on the clinical and genetic analysis of an Italian family with X-linked mental retardation (XLMR) and intra-familial heterogeneity, and provided insight into its molecular defect.</p> <p>Methods</p> <p>We carried out on linkage-candidate gene studies in a new MRX family (MRX87). All coding regions and exon-intron boundaries of ARX gene were analysed by direct sequencing.</p> <p>Results</p> <p>MRX87 patients had moderate to profound cognition impairment and a combination of minor congenital anomalies. The disease locus, MRX87, was mapped between DXS7104 and DXS1214, placing it in Xp22-p21 interval, a hot spot region for mental handicap. An in frame duplication of 24 bp (ARXdup24) in the second polyAlanine tract (polyA_II) in ARX was identified.</p> <p>Conclusion</p> <p>Our study underlines the role of ARXdup24 as a critical mutational site causing mental retardation linked to Xp22. Phenotypic heterogeneity of MRX87 patients represents a new observation relevant to the functional consequences of polyAlanine expansions enriching the puzzling complexity of ARXdup24-linked diseases.</p

    Speech delays and behavioral problems are the predominant features in individuals with developmental delays and 16p11.2 microdeletions and microduplications

    Get PDF
    Microdeletions and microduplications encompassing a ~593-kb region of 16p11.2 have been implicated as one of the most common genetic causes of susceptibility to autism/autism spectrum disorder (ASD). We report 45 microdeletions and 32 microduplications of 16p11.2, representing 0.78% of 9,773 individuals referred to our laboratory for microarray-based comparative genomic hybridization (aCGH) testing for neurodevelopmental and congenital anomalies. The microdeletion was de novo in 17 individuals and maternally inherited in five individuals for whom parental testing was available. Detailed histories of 18 individuals with 16p11.2 microdeletions were reviewed; all had developmental delays with below-average intelligence, and a majority had speech or language problems or delays and various behavioral problems. Of the 16 individuals old enough to be evaluated for autism, the speech/behavior profiles of seven did not suggest the need for ASD evaluation. Of the remaining nine individuals who had speech/behavior profiles that aroused clinical suspicion of ASD, five had formal evaluations, and three had PDD-NOS. Of the 19 microduplications with parental testing, five were de novo, nine were maternally inherited, and five were paternally inherited. A majority with the microduplication had delayed development and/or specific deficits in speech or language, though these features were not as consistent as seen with the microdeletions. This study, which is the largest cohort of individuals with 16p11.2 alterations reported to date, suggests that 16p11.2 microdeletions and microduplications are associated with a high frequency of cognitive, developmental, and speech delay and behavior abnormalities. Furthermore, although features associated with these alterations can be found in individuals with ASD, additional factors are likely required to lead to the development of ASD

    High-Throughput Analysis of Promoter Occupancy Reveals New Targets for Arx, a Gene Mutated in Mental Retardation and Interneuronopathies

    Get PDF
    Genetic investigations of X-linked intellectual disabilities have implicated the ARX (Aristaless-related homeobox) gene in a wide spectrum of disorders extending from phenotypes characterised by severe neuronal migration defects such as lissencephaly, to mild or moderate forms of mental retardation without apparent brain abnormalities but with associated features of dystonia and epilepsy. Analysis of Arx spatio-temporal localisation profile in mouse revealed expression in telencephalic structures, mainly restricted to populations of GABAergic neurons at all stages of development. Furthermore, studies of the effects of ARX loss of function in humans and animal models revealed varying defects, suggesting multiple roles of this gene during brain development. However, to date, little is known about how ARX functions as a transcription factor and the nature of its targets. To better understand its role, we combined chromatin immunoprecipitation and mRNA expression with microarray analysis and identified a total of 1006 gene promoters bound by Arx in transfected neuroblastoma (N2a) cells and in mouse embryonic brain. Approximately 24% of Arx-bound genes were found to show expression changes following Arx overexpression or knock-down. Several of the Arx target genes we identified are known to be important for a variety of functions in brain development and some of them suggest new functions for Arx. Overall, these results identified multiple new candidate targets for Arx and should help to better understand the pathophysiological mechanisms of intellectual disability and epilepsy associated with ARX mutations

    Uncommon genetic syndromes and narrative production - Case Studies with Williams, Smith-Magenis and Prader- Willi Syndromes

    Get PDF
    This study compares narrative production among three syndromes with genetic microdeletions: Williams syndrome (WS), Smith-Magenis syndrome (SMS), and Prader-Willi syndrome (PWS), characterized by intellectual disabilities and relatively spared language abilities. Our objective is to study the quality of narrative production in the context of a common intellectual disability. To elicit a narrative production, the task Frog! Where Are You was used. Then, structure, process, and content of the narrative process were analysed in the three genetic disorders:WS (n52), SMS (n52), and PWS (n52). Data show evidence of an overall low narrative quality in these syndromes, despite a high variability within different measures of narrative production. Results support the hypothesis that narrative is a highly complex cognitive process and that, in a context of intellectual disability, there is no evidence of particular ‘hypernarrativity’ in these syndromes.This research was supported by the grants FEDER –
    • …
    corecore