71 research outputs found

    Climatic and socio-economic factors supporting the co-circulation of dengue, Zika and chikungunya in three different ecosystems in Colombia

    Get PDF
    Dengue, Zika and chikungunya are diseases of global health significance caused by arboviruses and transmitted by the mosquito Aedes aegypti of worldwide circulation. The arrival of the Zika and chikungunya viruses to South America increased the complexity of transmission and morbidity caused by these viruses co-circulating in the same vector mosquito species. Here we present an integrated analysis of the reported arbovirus cases between 2007 and 2017 and local climate and socio-economic profiles of three distinct Colombian municipalities (Bello, Cúcuta and Moniquirá). These locations were confirmed as three different ecosystems given their contrasted geographic, climatic and socio-economic profiles. Correlational analyses were conducted with both generalised linear models and generalised additive models for the geographical data. Average temperature and wind speed were strongly correlated with disease incidence. The transmission of Zika during the 2016 epidemic appeared to decrease circulation of dengue in Cúcuta, an area of sustained high incidence of dengue. Socio-economic factors such as barriers to health and childhood services, inadequate sanitation and poor water supply suggested an unfavourable impact on the transmission of dengue, Zika and chikungunya in all three ecosystems. Socio-demographic influencers were also discussed including the influx of people to Cúcuta, fleeing political and economic instability from neighbouring Venezuela. Aedes aegypti is expanding its range and increasing the global threat of these diseases. It is therefore vital that we learn from the epidemiology of these arboviruses and translate it into an actionable knowledge base. This is even more acute given the recent historical high of dengue cases in the Americas in 2019, preceding the COVID-19 pandemic, which is itself hampering mosquito control efforts. Author summary Viruses transmitted by Ae. aegypti mosquitoes (dengue, Zika, chikungunya) are amongst the most significant public health concerns of recent years due to the increase in global cases and the rapid spread of the vectors. The primary method of controlling the spread of these arboviruses is through mosquito control. Understanding factors associated with risk of these viruses is key for informing control programmes and predicting when outbreaks may occur. Climate is an important driver in mosquito development and virus reproduction and hence the association of climate with disease risk. Socio-economic factors contribute to perpetuate disease risk. Areas of high poverty have abundance of suitable habitat for Ae. aegypti (e.g. due to poor housing and sanitation). This study investigated the factors effecting arbovirus incidence in three distinct regions of Colombia: Bello, Cúcuta and Moniquirá. The results show significant relationships between disease incidence and temperature, precipitation and wind speed. A decline in dengue following outbreaks of Zika (2016) is also reported. Measures of poverty, including critical overcrowding and no access to improved water source were also found to be higher in areas of higher disease incidence. The results of this study highlight the importance of using a multifactorial approach when designing vector control programs in order to effectively distribute health care resources

    A Point Mutation V419L in the Sodium Channel Gene from Natural Populations of Aedes aegypti Is Involved in Resistance to λ-Cyhalothrin in Colombia

    Get PDF
    Resistance to pyrethroids in mosquitoes is mainly caused by target site insensitivity known as knockdown resistance (kdr). In this work, we examined the point mutations present in portions of domains I, II, III, and IV of the sodium channel gene in Aedes aegypti mosquitoes from three Colombian municipalities. A partial region coding for the sodium channel gene from resistant mosquitoes was sequenced, and a simple allele-specific PCR-based assay (AS-PCR) was used to analyze mutations at the population level. The previously reported mutations, V1016I and F1534C, were found with frequencies ranging from 0.04 to 0.41, and 0.56 to 0.71, respectively, in the three cities. Moreover, a novel mutation, at 419 codon (V419L), was found in Ae. aegypti populations from Bello, Riohacha and Villavicencio cities with allelic frequencies of 0.06, 0.36, and 0.46, respectively. Interestingly, the insecticide susceptibility assays showed that mosquitoes from Bello were susceptible to λ-cyhalothrin pyrethroid whilst those from Riohacha and Villavicencio were resistant. A positive association between V419L and V1016I mutations with λ-cyhalothrin resistance was established in Riohacha and Villavicencio. The frequency of the F1534C was high in the three populations, suggesting that this mutation could be conferring resistance to insecticides other than λ-cyhalothrin, particularly type I pyrethroids. Further studies are required to confirm this hypothesis

    Expansive and Diverse Phenotypic Landscape of Field Aedes aegypti (Diptera: Culicidae) Larvae with Differential Susceptibility to Temephos: Beyond Metabolic Detoxification

    Get PDF
    Arboviruses including dengue, Zika, and chikungunya are amongst the most significant public health concerns worldwide. Arbovirus control relies on the use of insecticides to control the vector mosquito Aedes aegypti (Linnaeus), the success of which is threatened by widespread insecticide resistance. The work presented here profiled the gene expression of Ae. aegypti larvae from field populations of Ae. aegypti with differential susceptibility to temephos originating from two Colombian urban locations, Bello and Cúcuta, previously reported to have distinctive disease incidence, socioeconomics, and climate. We demonstrated that an exclusive field-to-lab (Ae. aegypti strain New Orleans) comparison generates an over estimation of differential gene expression (DGE) and that the inclusion of a geographically relevant field control yields a more discrete, and likely, more specific set of genes. The composition of the obtained DGE profiles is varied, with commonly reported resistance associated genes including detoxifying enzymes having only a small representation. We identify cuticle biosynthesis, ion exchange homeostasis, an extensive number of long noncoding RNAs, and chromatin modelling among the differentially expressed genes in field resistant Ae. aegypti larvae. It was also shown that temephos resistant larvae undertake further gene expression responses when temporarily exposed to temephos. The results from the sampling triangulation approach here contribute a discrete DGE profiling with reduced noise that permitted the observation of a greater gene diversity, increasing the number of potential targets for the control of insecticide resistant mosquitoes and widening our knowledge base on the complex phenotypic network of the Ae. aegypti response to insecticides

    Expression Profile of Genes during Resistance Reversal in a Temephos Selected Strain of the Dengue Vector, Aedes aegypti

    Get PDF
    Background The mosquito Aedes aegypti is one of the most important disease vectors because it transmits two major arboviruses, dengue and yellow fever, which cause significant global morbidity and mortality. Chemical insecticides form the cornerstone of vector control. The organophosphate temephos a larvicide recommended by WHO for controlling Ae. aegypti, however, resistance to this compound has been reported in many countries, including Brazil. Methodology/Principal Findings The aim of this study was to identify genes implicated in metabolic resistance in an Ae. aegypti temephos resistant strain, named RecR, through microarray analysis. We utilized a custom ‘Ae. aegypti detox chip’ and validated microarray data through RT-PCR comparing susceptible and resistant individuals. In addition, we analyzed gene expression in 4th instar larvae from a reversed susceptible strain (RecRev), exposed and unexposed to temephos. The results obtained revealed a set of 13 and 6 genes significantly over expressed in resistant adult mosquitoes and larvae, respectively. One of these genes, the cytochrome P450 CYP6N12, was up-regulated in both stages. RT-PCR confirmed the microarray results and, additionally, showed no difference in gene expression between temephos exposed and unexposed RecRev mosquitoes. This suggested that the differences in the transcript profiles among the strains are heritable due to a selection process and are not caused by immediate insecticide exposure. Reversal of temephos resistance was demonstrated and, importantly, there was a positive correlation between a decrease in the resistance ratio and an accompanying decrease in the expression levels of previously over expressed genes. Some of the genes identified here have also been implicated in metabolic resistance in other mosquito species and insecticide resistant populations of Ae. aegypti. Conclusions/Significance The identification of gene expression signatures associated to insecticide resistance and their suppression could greatly aid the development of improved strategies of vector control

    Rapid Evaporative Ionization Mass Spectrometry (REIMS): a Potential and Rapid Tool for the Identification of Insecticide Resistance in Mosquito Larvae

    Get PDF
    Insecticide resistance is a significant challenge facing the successful control of mosquito vectors globally. Bioassays are currently the only method for phenotyping resistance. They require large numbers of mosquitoes for testing, the availability of a susceptible comparator strain, and often insectary facilities. This study aimed to trial the novel use of rapid evaporative ionization mass spectrometry (REIMS) for the identification of insecticide resistance in mosquitoes. No sample preparation is required for REIMS and analysis can be rapidly conducted within hours. Temephos resistant Aedes aegypti (Linnaeus) larvae from Cúcuta, Colombia and temephos susceptible larvae from two origins (Bello, Colombia, and the lab reference strain New Orleans) were analyzed using REIMS. We tested the ability of REIMS to differentiate three relevant variants: population source, lab versus field origin, and response to insecticide. The classification of these data was undertaken using linear discriminant analysis (LDA) and random forest. Classification models built using REIMS data were able to differentiate between Ae. aegypti larvae from different populations with 82% (±0.01) accuracy, between mosquitoes of field and lab origin with 89% (±0.01) accuracy and between susceptible and resistant larvae with 85% (±0.01) accuracy. LDA classifiers had higher efficiency than random forest with this data set. The high accuracy observed here identifies REIMS as a potential new tool for rapid identification of resistance in mosquitoes. We argue that REIMS and similar modern phenotyping alternatives should complement existing insecticide resistance management tools

    Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria

    Get PDF
    Background: Insecticide resistance in Anopheles mosquitoes is threatening the success of malaria control programmes. This is particularly true in Benin where pyrethroid resistance has been linked to the failure of insecticide treated bed nets. The role of mutations in the insecticide target sites in conferring resistance has been clearly established. In this study, the contribution of other potential resistance mechanisms was investigated in Anopheles gambiae s.s. from a number of localities in Southern Benin and Nigeria. The mosquitoes were sampled from a variety of breeding sites in a preliminary attempt to investigate the role of contamination of mosquito breeding sites in selecting for resistance in adult mosquitoes. Results: All mosquitoes sampled belonged to the M form of An. gambiae s.s. There were high levels of permethrin resistance in an agricultural area (Akron) and an urban area (Gbedjromede), low levels of resistance in mosquito samples from an oil contaminated site (Ojoo) and complete susceptibility in the rural Orogun location. The target site mutation kdrW was detected at high levels in two of the populations (Akron f = 0.86 and Gbedjromede f = 0.84) but was not detected in Ojoo or Orogun. Microarray analysis using the Anopheles gambiae detox chip identified two P450s, CYP6P3 and CYP6M2 up regulated in all three populations, the former was expressed at particularly high levels in the Akron (12.4-fold) and Ojoo (7.4-fold) populations compared to the susceptible population. Additional detoxification and redox genes were also over expressed in one or more populations including two cuticular pre-cursor genes which were elevated in two of the three resistant populations. Conclusion: Multiple resistance mechanisms incurred in the different breeding sites contribute to resistance to permethrin in Benin. The cytochrome P450 genes, CYP6P3 and CYP6M2 are upregulated in all three resistant populations analysed. Several additional potential resistance mechanisms were also identified that warrant further investigation. Metabolic genes were over expressed irrespective of the presence of kdr, the latter resistance mechanism being absent in one resistant population. The discovery that mosquitoes collected from different types of breeding sites display differing profiles of metabolic genes at the adult stage may reflect the influence of a range of xenobiotics on selecting for resistance in mosquitoes

    Developing the role of Earth observation in spatio-temporal mosquito modelling to identify malaria hot-spots

    Get PDF
    Anopheles mosquitoes are the vectors of human malaria, a disease responsible for a significant burden of global disease and over half a million deaths in 2020. Here, methods using a time series of cost-free Earth Observation (EO) data, 45,844 in situ mosquito monitoring captures, and the cloud processing platform Google Earth Engine are developed to identify the biogeographical variables driving the abundance and distribution of three malaria vectors—Anopheles gambiae s.l., An. funestus, and An. paludis—in two highly endemic areas in the Democratic Republic of the Congo. EO-derived topographical and time series land surface temperature and rainfall data sets are analysed using Random Forests (RFs) to identify their relative importance in relation to the abundance of the three mosquito species, and they show how spatial and temporal distributions vary by site, by mosquito species, and by month. The observed relationships differed between species and study areas, with the overall number of biogeographical variables identified as important in relation to species abundance, being 30 for An. gambiae s.l. and An. funestus and 26 for An. paludis. Results indicate rainfall and land surface temperature to consistently be the variables of highest importance, with higher rainfall resulting in greater mosquito abundance through the creation of pools acting as mosquito larval habitats; however, proportional coverage of forest and grassland, as well as proximity to forests, are also consistently identified as important. Predictive application of the RF models generated monthly abundance maps for each species, identifying both spatial and temporal hot-spots of high abundance and, by proxy, increased malaria infection risk. Results indicate greater temporal variability in An. gambiae s.l. and An. paludis abundances in response to seasonal rainfall, whereas An. funestus is generally more temporally stable, with maximum predicted abundances of 122 for An. gambiae s.l., 283 for An. funestus, and 120 for An. paludis. Model validation produced R2 values of 0.717 for An. gambiae s.l., 0.861 for An. funestus, and 0.448 for An. paludis. Monthly abundance values were extracted for 248,089 individual buildings, demonstrating how species abundance, and therefore biting pressure, varies spatially and seasonally on a building-to-building basis. These methods advance previous broader regional mosquito mapping and can provide a crucial tool for designing bespoke control programs and for improving the targeting of resource-constrained disease control activities to reduce malaria transmission and subsequent mortality in endemic regions, in line with the WHO’s ‘High Burden to High Impact’ initiative. The developed method was designed to be widely applicable to other areas, where suitable in situ mosquito monitoring data are available. Training materials were also made freely available in multiple languages, enabling wider uptake and implementation of the methods by users without requiring prior expertise in EO

    Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The yellow fever mosquito <it>Aedes aegypti </it>is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of <it>Ae. aegypti </it>to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood.</p> <p>Results</p> <p>The present paper investigates the molecular basis of insecticide resistance in a population of <it>Ae. aegypti </it>collected in Martinique (French West Indies). Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71%) of the sodium channel 'knock down resistance' (<it>kdr</it>) mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray <it>Aedes Detox Chip </it>containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT-PCR.</p> <p>Conclusion</p> <p>These results suggest that the high level of insecticide resistance found in <it>Ae. aegypti </it>mosquitoes from Martinique island is the consequence of both target-site and metabolic based resistance mechanisms. Insecticide resistance levels and associated mechanisms are discussed in relation with the environmental context of Martinique Island. These finding have important implications for dengue vector control in Martinique and emphasizes the need to develop new tools and strategies for maintaining an effective control of <it>Aedes </it>mosquito populations worldwide.</p
    corecore