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Abstract: Anopheles mosquitoes are the vectors of human malaria, a disease responsible for a signif-
icant burden of global disease and over half a million deaths in 2020. Here, methods using a time
series of cost-free Earth Observation (EO) data, 45,844 in situ mosquito monitoring captures, and
the cloud processing platform Google Earth Engine are developed to identify the biogeographical
variables driving the abundance and distribution of three malaria vectors—Anopheles gambiae s.l.,
An. funestus, and An. paludis—in two highly endemic areas in the Democratic Republic of the Congo.
EO-derived topographical and time series land surface temperature and rainfall data sets are analysed
using Random Forests (RFs) to identify their relative importance in relation to the abundance of
the three mosquito species, and they show how spatial and temporal distributions vary by site, by
mosquito species, and by month. The observed relationships differed between species and study
areas, with the overall number of biogeographical variables identified as important in relation to
species abundance, being 30 for An. gambiae s.l. and An. funestus and 26 for An. paludis. Results
indicate rainfall and land surface temperature to consistently be the variables of highest importance,
with higher rainfall resulting in greater mosquito abundance through the creation of pools acting as
mosquito larval habitats; however, proportional coverage of forest and grassland, as well as proxim-
ity to forests, are also consistently identified as important. Predictive application of the RF models
generated monthly abundance maps for each species, identifying both spatial and temporal hot-spots
of high abundance and, by proxy, increased malaria infection risk. Results indicate greater temporal
variability in An. gambiae s.l. and An. paludis abundances in response to seasonal rainfall, whereas
An. funestus is generally more temporally stable, with maximum predicted abundances of 122 for
An. gambiae s.l., 283 for An. funestus, and 120 for An. paludis. Model validation produced R2 values
of 0.717 for An. gambiae s.l., 0.861 for An. funestus, and 0.448 for An. paludis. Monthly abundance
values were extracted for 248,089 individual buildings, demonstrating how species abundance, and
therefore biting pressure, varies spatially and seasonally on a building-to-building basis. These
methods advance previous broader regional mosquito mapping and can provide a crucial tool for
designing bespoke control programs and for improving the targeting of resource-constrained disease
control activities to reduce malaria transmission and subsequent mortality in endemic regions, in line
with the WHO’s ‘High Burden to High Impact’ initiative. The developed method was designed to
be widely applicable to other areas, where suitable in situ mosquito monitoring data are available.
Training materials were also made freely available in multiple languages, enabling wider uptake and
implementation of the methods by users without requiring prior expertise in EO.
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1. Introduction

Malaria is a life-threatening vector-borne disease caused by five Plasmodium species
in humans and is transmitted by infected female Anopheles mosquitoes. In 2020, there
were an estimated 214 million malaria cases globally with 627,000 deaths, an increase of
14 million more cases and 69,000 more deaths compared with 2019 [1]. Disruptions to
activities associated with malaria prevention (e.g., bed net distribution), diagnosis, and
treatment due to the COVID-19 pandemic are implicated in approximately two thirds of
the additional deaths [1]. The majority of deaths are in children under five years old, with
the greatest burden of disease carried by sub-Saharan African countries, where 90% of the
deaths occur. Although the malaria incidence rate declined globally between 2010 and 2018,
the rate of change has slowed dramatically between 2014 and 2018.

In the Democratic Republic of the Congo (DRC), 97% of a population of 91 million
live in areas where stable malaria transmission occurs for 8–12 months of the year, with
the DRC accounting for 12% of global malaria burden and deaths [1]. Within the DRC,
malaria is a major contributor to morbidity and mortality, being responsible for 39% of
both outpatient visits and deaths.

Globally, between 2000 and 2015, an estimated 663 million deaths were averted due to
malaria control efforts with long-lasting insecticide-treated bed net (LLINs) deployment ac-
counting for the majority of this success [2]. Despite these gains, 2016 saw a five million case
increase compared with 2015 [3], with 10 out of the 11 highest burden countries contributing
to the increase. The second highest increase was in the DRC, with over half a million excess
malaria cases. The global spread of insecticide resistance in mosquitoes, antimalarial drug
resistance, and donor fatigue are touted as contributing factors to this increase. As such,
the targets set by the Global Technical Strategy for Malaria 2016–2030 (GTS) [4] to reduce
malaria by at least 40% by 2020, 75% by 2025, and 90% by 2030 are off course.

Core interventions (LLINs and indoor residual house spraying (IRS) with insecticides)
can be supplemented with larval source management strategies (LSM), whereby potential
aquatic mosquito larval habitats are managed to prevent the completion of the immature
stages of the mosquito life cycle [5]. Such methods play an important role in malaria elimi-
nation programmes [6,7]. However, malaria transmission throughout Africa is spatially
and temporally heterogeneous [8], and disease control resources are limited, with their
effectiveness often reduced by inefficient geographical targeting. Thus, there is an urgent
need for cost-effective, broad-scale monitoring mechanisms to identify the geographical
foci of mosquito proliferation and malaria transmission to better target all vector control
activities. The ability to identify these foci at a very fine scale—even to the individual
building level—is particularly valuable, identifying when, where, and to what level specific
local communities are at an increased risk of infection, representing an advancement in
broader regional mosquito mapping.

Mosquitoes in the Anopheles gambiae sensu lato (s.l.) and Anopheles funestus complexes
are the major malaria vectors in Africa and are highly anthropophilic [9]. Secondary vectors
also contribute to disease transmission. An. paludis, for example, may be an important
vector in the DRC with its indoor biting behaviour, yet, to date, very little is known about
this species [10–12]. To better understand the spatio-temporal dynamics of transmission
risk and to improve disease control activity targeting, we must draw on existing knowledge
of Anopheles mosquito ecology. Key requirements for mosquito survival are access to
water for egg oviposition, food (blood for the female and sugar meals for male and female
mosquitoes), and shelter from predation and desiccation from direct sunlight, with forest
edges being ideal for this [13]. Areas of high humidity and rainfall prove popular with
An. gambiae sensu stricto (s.s.) and An. coluzzii, as they prefer sunlit, shallow, and temporary
water bodies (e.g., puddles, ditches, hoof or tyre prints, and flood zones) [14]. Therefore,
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An. gambiae s.s. and An. coluzzii numbers fluctuate seasonally, being highest towards the end
of the rainy season and lowest during the dry season. Consequently, the number of malaria
cases linked to these two vectors also fluctuates seasonally. In contrast, An. funestus prefers
semi-permanent and permanent water bodies (e.g., lake margins, marshes, slow-moving
rivers, rice fields, fish ponds, and irrigation channels) [14], which can lead to extended
malaria transmission throughout the year.

The mosquito life cycle exhibits strong links to the physical environment. Natural
and anthropogenic environmental changes, such as climate variability and land cover
change, can drive malaria distribution by influencing the habitats of mosquito adults and
larvae [15–17]. In sub-Saharan Africa, multiple environmental variables have been shown
to influence malaria transmission and mosquito ecology. Although climate has been shown
to have the leading impact on malaria change [18], local scale variables, such as aquatic
habitat [19], land cover distributions [20], and topography [21], can also be significant in
determining the presence and distribution of malaria vectors. The transmission of malaria
in urban environments is a particular concern, with predictions that over 50% of Africa’s
population will live in urban areas by 2030 [22]. Urban malaria risk is far more hetero-
geneous than rural malaria; therefore, a greater understanding of spatial and temporal
urban transmission is required for effective control strategies [23]. Understanding how
this transmission risk varies on a building-to-building level can be particularly valuable
in these complex urban scenarios. The introduction in East Africa of species such as the
Asian malaria mosquito, Anopheles stephensi, a vector that is superbly adapted to urban
environments [24] and which led to the WHO’s call for prioritised surveillance and control
of this species, further complicates urban malaria risk.

Conventional studies of mosquitos conducted over an extended period of time are
limited in geographical scope due to the logistical constraints and labour-intensiveness
of data collection, typically involving trap deployment to catch adult mosquitoes [25] or
the collection of immature larval stages by sampling water bodies [26] over several years,
incorporating successive rainy and dry seasons. Broader malaria risk mapping has been
performed using data-driven modelling [13]; however, this often offers a very specific
characterisation of local scale contexts at high resolutions or very general descriptions of
large-scale phenomena at low resolutions. Both approaches limit the ability to describe
disease transmission mechanisms precisely [27] and suffer from limited data availability in
remote areas. Ecological niche modelling (ENM) has been extensively used in the study of
the distribution of a variety of infectious diseases, their vectors, and their hosts to identify
the geographic distribution of suitable habitats for the transmission of diseases. Although
studies such as [28] used ENM to produce static spatial maps of the risk for mosquito
species at a relatively coarse 1 km resolution, these do not typically reflect how this risk
may change seasonally [29]. Satellite remote sensing offers a solution, providing frequent,
multi-resolution climate and land surface data, enabling the identification and monitoring
of environmental risk factors of vector-borne diseases [30–34] over large areas [35] and
at far higher spatial resolutions (up to 10 m for cost-free Sentinel-2 imagery) and describ-
ing how these change seasonally. Remote sensing has found increasing applications in
epidemiology, including malarial studies, over the past 40 years. It is principally used
to provide information on environmental variables that determine the distributions of
infectious disease either directly or through their influence on vector, pathogen, or host
habitats [20,36]. Within a malaria context, remote sensing has been applied to identify
specific landscape characteristics linked to malaria and mosquito distributions [32,37].

Very-high resolution (VHR) satellite mapping has also been used in urban contexts
to produce predictive maps of intra-urban malaria transmission over an 8-year period in
Tanzania [38]. There is a pressing need for such predictive maps given the complexity and
likely increase in urban malaria; however, the cost of VHR satellite imagery can be a barrier
to its uptake. Advances in satellite data acquisition and processing now offer improved
opportunities for malaria studies, with Sentinel-2 offering more frequent data acquisition
(every 5 days at the equator) over previous sensors such as Landsat (16 days), creating more
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opportunities to acquire cloud-free imagery. Additionally, by using these optical (spectral)
and Sentinel-1 Synthetic Aperture Radar (SAR) data, which provide structural information
of target features synergistically, improved classifications of land cover, which can be a key
driver of mosquito distributions, have been observed [39,40], compared with where either
optical or SAR data have been used independently [41,42]. Importantly, Sentinel-1 and
Sentinel-2 data are available cost-free, enabling wide uptake of these datasets and methods
as a monitoring tool.

Recent advancements in data processing have further enabled the broad-scale applica-
tion of remote sensing data to environmental studies via the cloud-computing platform
Google Earth Engine (GEE) [43]. GEE provides vast computational power for processing
satellite and ancillary datasets on a global scale [44] and holds ingested archives of satellite
imagery and environmental datasets. Importantly, GEE functionality enables the process-
ing of collections of satellite data rather than just individual images, including generating
cloud-free composite images from a series of cloud-affected images. This is particularly
valuable in persistently cloud-affected areas, such as many tropical malaria-endemic areas.
These capabilities mean large-scale land cover mapping and environmental monitoring
can be performed in a manner that was previously unfeasible. Additionally, GEE holds
the Open Buildings V1 Polygons dataset, comprising buildings across Africa and enabling
modelling results to be linked to individual buildings.

Previous work, by focusing principally either on mosquito–landscape–climate interac-
tions at coarse resolutions to assess temporal variability or at higher resolutions to assess
spatial variability for specific snap-shots in time, leaves a knowledge gap in relation to
temporal variability in mosquito dynamics at high spatial resolutions. Additionally, these
previous studies have not necessarily included a broad range of environmental covariates
that are fully representative of the variables driving mosquito distributions. This data gap
is addressed here, where, uniquely, a comprehensive suite of variables capturing landscape
structures and proximity to key landscape features; temporal variability in rainfall patterns
and land surface temperature; landscape conditions via aggregated vegetation; and water
indices variables are used to model the abundance of multiple mosquito species in Africa,
identifying bespoke sets of key variables for each. The higher spatial resolution of Sentinel-
2, compared with MODIS or Landsat in previous studies, and the production of mosquito
abundance measures also build on and advance previous work for individual buildings by
relating risk to household location.

This project develops a new approach for broad-scale, repeatable monitoring of malaria
risk hotspots in the DRC, using in situ mosquito data and cost-free remote sensing data. This
is timely, as robust, repeatable methods are required to underpin future malaria monitoring
systems and specifically to integrate in situ observations of mosquito abundance with the
spatial and temporal coverage of Earth Observation (including land cover) and climate
data. This is achieved through two specific objectives: (1) identifying key variables driving
three Anopheles mosquito species distributions and abundances, and (2) estimating monthly
mosquito distributions and determining how these vary spatially and temporally. To
enable wider application of the developed methods by end-users without prior expertise in
Earth Observation analysis, training materials and sample data sets enabling independent
implementation of these methods are available in multiple languages in [45]. This can allow
organisations such as disease control agencies to incorporate these analysis methods in their
planning and management processes without the need for EO specialists, which historically
may have limited opportunities to incorporate EO into malaria control programmes.

2. Materials and Methods
2.1. Study Area

This project focused on two 50 km × 50 km urban areas and their surroundings in the
DRC: the medium-sized town of Lodja (population approx. 80,000) (latitude: −3.524661◦,
longitude: 23.596669◦) and a smaller settlement, Kapolowe (latitude: −10.942157◦, longi-
tude: 26.952115◦) (Figure 1). Both are meso-endemic for malaria, with parasite prevalence
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between 6 and 30% [46] and with high Plasmodium sporozoite rates for An. gambiae s.l.
(Lodja 2.9% (9/307), Kapolowe 6.3% (8/127)) and An. funestus (Lodja 0% (0/24), Kapolowe
8% (4/50)) [47].
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Figure 1. Lodja and Kapolowe study areas.

The areas surrounding these two towns are typified by a mix of land cover components,
including traditional smallholder shifting cultivation (cleared land, active fields, and fallow
fields) along with settlements, grassy and bare areas, and a forest interface. The Lukene
river flows immediately to the south of Lodja, and the area to the east of Kapolowe is
dominated by Lake Tshangalele and large expanses of swamp. At Lodja, mean monthly
rainfall (between 1991–2015) was <100 mm for June and July and 100–220 mm/month
for the other months of the year, with mean temperatures of 24–26 ◦C all year round. In
Kapolowe, mean monthly rainfall is more seasonal than that of Lodja, with a pronounced
dry period between May and September, followed by a rainy season from October to April
when the mean rainfall is approximately 30–200 mm/month [47]. The mean temperature
in Kapolowe over the year varies more than that of Lodja, ranging from 18 ◦C in June and
July up to 25 ◦C in October. In 2015, PermaNet 2.0 (deltamethrin) nets were distributed
in Lodja, and in 2016, DawaPlus 2.0 (deltamethrin) nets were distributed in Kapolowe.
Both distributions were part of provincial distributions. No indoor residual spraying was
conducted at either site.

2.2. In Situ Mosquito Data Collection

Mosquitoes were collected monthly by the Institut National de Recherche Biomédicale
(INRB, DRC) during 2015–2017 and 2019 in Lodja and 2016–2017 in Kapolowe. Mosquitoes
were collected from each of the Lodja and Kapolowe study areas using human landing
catches (HLCs), as previously described in [47]. Field technicians undertook eight HLCs
over four nights each month, with two different houses each night (total of eight different
houses each month). At each house between 18:00 hrs and 06:00 hrs, two technicians
conducted indoor HLCs, and two others conducted outdoor HLC. Although focused within
the urban areas of Lodja and Kapolowe, the areas surrounding the sampling locations were
heterogeneous in terms of land cover present, comprising built-up areas, trees, grassland,
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fallow areas, static water (fish ponds), and flowing water. Sampling locations at Kapolowe
were focused on the edges of or outside the built-up area, in close proximity to a mix of
land cover types that are distributed across the wider study area (Figures 2 and 3). Houses
were chosen by the collection teams based on proximity to known larval sites, acceptance
by households, and other logistical concerns.
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In Lodja, a similar proportion of An. gambiae s.l. and An. coluzzii was collected,
and species identification for An. gambiae s.l. was not performed for mosquitoes from
Kapolowe [47]. An. gambiae s.l. refers to the An. gambiae complex of eight species that are
morphologically indistinguishable from each other and that can only be differentiated by
molecular analysis [48]. In this study An. gambiae were not identified at the species level;
therefore, senus lato (s.l.) was used for the rest of the study. Monthly collection enabled the
assessment of the variation in mosquito prevalence in response to current and preceding
rainfall and land surface temperature conditions.

2.3. Environmental Variables

A series of biogeographical variables, previously identified as being ecologically
relevant to the mosquito life cycle and malaria transmission, were modelled here in relation
to mosquito abundance. These include topography, land cover, vegetation index, land
surface temperature, and precipitation variables (Table 1).

For this study, all variables were considered to be temporally stable for the time-period
of mosquito data collection with the exception of the monthly precipitation and land surface
temperature data, which varied each month. Median vegetation index value datasets were
generated from all available cloud-free Sentinel-2 imagery, acquired during the mosquito
data collection periods for each study area, quantifying the relative ‘typical’ vegetation
state across the study areas and the spatial variability thereof.

Table 1. Bio-geographical variables previously identified as being of relevance to mosquito distribu-
tions and/or malaria transmission. SRTM DEM refers to the 30 m spatial resolution Shuttle Radar
Topography Mission (SRTM) Digital Elevation Model (DEM). CHIRPS refers to the Climate Hazards
Group InfraRed Precipitation with Station data precipitation data.

Variable Description Data Source Reference

Topographic
Altitude Elevation values (m). SRTM DEM. [21,32,37,49]

Slope Slope values (degrees). SRTM DEM. [21,32,37,49]
Aspect Aspect values (degrees). SRTM DEM. [21,32,37,49]

Topographical
Position Index

The elevation of a pixel minus
the mean elevation of the

surrounding 15-pixel radius area.
SRTM DEM. [37]

Climatic

Precipitation Monthly mean precipitation
(mean mm/day). CHIRPS [21,32,49]

Land surface
temperature

Monthly mean land surface
temperature (Kelvin) MODIS [50]

Land cover

Land cover

Proportional coverage of each
land cover class, derived from a
land cover classification of the

study area. The area over which
land cover proportions was
calculated differed for the

different mosquito species based
on their established flight

distances. Proportional coverage
of forest and fallow classes

combined was also calculated.

Sentinel-1,
Sentinel-2, and

SRTM DEM.
[13,20,21,49]

Proximity to
forest edge

Distance from pixel centroid to
the nearest patch of forest, fallow,

and forest and fallow
classes combined.

Derived from land
cover classification. [37]

Proximity to
water body

Distance from pixel centroid to
the nearest patch of flowing

water, static water, and swamp.

Derived from land
cover classification. [6,19]
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Table 1. Cont.

Variable Description Data Source Reference

Vegetation Indices
Normalised

Difference Vegetation
Index (NDVI), Soil

Adjusted Vegetation
Index (SAVI),
Normalised

Difference Water
Index (NDWI), and

Modified Normalised
Difference Water
Index (MNDWI).

Median VI values calculated
from a collection of cloud-free

imagery acquired from the
period of mosquito data

collection in each study area.

Sentinel-2 [21,51]

2.4. Remote Sensing Analysis
2.4.1. Pre-Processing

This study used Google Earth Engine (GEE) as the principal source of remote sens-
ing and environmental data sets and for performing data pre-processing and analysis.
The utilized remote sensing datasets were Sentinel-1 (SAR) [52] and Sentinel-2 (optical)
data [53], along with Climate Hazards Group InfraRed Precipitation with Station data
(CHIRPS) monthly precipitation data [54], MODIS land surface temperature and emissivity
data [55], and Shuttle Radar Topography Mission (SRTM) data [56,57] for topographical
characterisation. The acquisition dates of the remote sensing datasets covered the period of
mosquito data collection for each site.

To generate land cover maps of each study area, Sentinel-1 SAR data and Sentinel-2
optical images were utilised synergistically. The Sentinel-1 SAR data were descending orbit
data, with VV and VH polarisations and the derived ratio (VH/VV), from the Ground
Range Detected (GRD) data product in the Interferometric Wide Swath (IW) acquisition
mode. These data underwent pre-processing (GRD border noise removal, thermal noise
removal, radiometric calibration, and orthorectification to derive the backscatter coefficient
(Sigma Naught dB) of each pixel) [58]. Median reducers in GEE were used to produce
median pixel value composite raster layers from image collections for VV, VH, and VH/VV
polarisations from all available data acquisitions in the time periods of 1 January 2016 to
31 December 2019 for Lodja and 1 January 2016 to 31 December 2017 for Kapolowe, prior
to subsetting the data to the study area extents. At each location in the output median pixel
value composite, the pixel value is the median of all unmasked pixels in the input imagery
collection. Median values, derived from a full annual cycle of Sentinel-1 data, were used
here to be representative of the general landscape condition throughout the year. This was
performed instead of using data from a single date, which, depending on the vegetation
phenological stage, may be less representative of the general landscape condition.

The Sentinel-2 (optical) Level 2A orthorectified surface reflectance data at a 10/20 m
spatial resolution (depending on spectral band) was used in this study. All available
Sentinel-2 images corresponding to the mosquito sampling periods for each site were
selected and cloud and cloud-shadow masked using the Sentinel-2 Cloud Probability
product, which is also available in GEE. A median pixel value composite image, also
produced in GEE using a median reducer, was then generated from the collections of
images for each site. For the Sentinel-2 imagery, spectral bands 2 (490 nm), 3 (560 nm),
4 (665 nm), 5 (705 nm), 6 (740 nm), 7 (783 nm), 8 (842 nm), 8a (865 nm), 11 (1610 nm),
and 12 (2190 nm) were used. Topographical characterisation of the study areas used 30 m
resolution SRTM Digital Elevation Model (DEM) data. Slope and aspect variables were
derived from this DEM, with the Topographical Position Index (TPI) calculated as the
elevation of the pixel in question, minus the mean elevation of the surrounding 15-pixel
radius area.
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2.4.2. Land Cover Classification

To perform the land cover classifications, the Sentinel-2 imagery (10 retained bands),
the median Sentinel-1 SAR bands (VV, VH, and VH/VV), and the SRTM bands (elevation,
aspect, and slope) were composited together to form a 16-band data stack. This data stack
was then classified using a Random Forest (RF) classifier with 500 trees. An eight-class
classification nomenclature was used specifically targeting land cover types relevant to the
ecology of mosquitoes, for example, forests (with woodland edges being important resting
areas), water (larval habitats), and built-up areas (with human populations susceptible to
malaria infection) (Table 2).

Table 2. Land cover classes, adapted from [59].

Land Cover Class Description

Forest A forest stand with over 60% tree cover.
Grassland Natural grassland areas.

Agriculture A field where crops are currently grown.
Fallow A field left fallow, often grassy with increasing shrub encroachment.

Built-up Roads, paths, settlements, communal areas along roads, buildings,
and huts.

Flowing water Rivers and streams.
Static water Ponds, lakes, and rice paddies, without emergent vegetation.

Swamp Swamp with surface vegetation.

Reference data for both training and validating the land cover classifications were
collected from three sources: (1) field collected locations of known land cover classes (with
locations recorded via GPS and collected during field mosquito sampling); (2) further
reference locations derived from field-collected photographs; and (3) visual interpretations
of VHR satellite imagery available through public portals, such as Google Earth and Bing
Aerial map layers. The use of higher resolution imagery as reference data is an established
technique [41,60], with Google Earth archives also previously being successfully used for
this purpose [32,39].

For validation, a regular point grid with 2 km spacing was generated for both study
areas, with the land cover at these locations identified via the VHR imagery, ensuring
a spread of validation points across the full areas. Additional points were added for
sparse and spatially clustered classes to ensure a minimum of 30 validation points were
collected for each class (following [32]). An RF classifier was used to generate the land cover
classifications using Google Earth Engine. RF classifiers are well established for mapping
land cover and have also been used to generate land cover maps within a malaria study
context [32]. Accuracy assessments of each land cover classification using the reference
validation data were performed, with confusion matrices produced for each study area
(Tables S1 and S2).

Proportional coverage (percentage fractional cover) of each land cover class across the
study areas was calculated using a moving window to assess whether the increased pres-
ence of certain habitats, for example, water serving as a larval habitat, is related to increased
mosquito abundance. Additionally, the proportional presence of forest and fallow classes
combined was calculated. This was performed independently for each mosquito species,
with different kernel sizes used based on established mosquito flight range. Mosquito
flight range is species-specific and is influenced by environmental conditions (e.g., wind
and vegetation) and physiological status (e.g., sugar or blood fed). The average flight
range for An. gambiae is 846 m and for An. funestus is 300 m, with no information avail-
able for An. paludis [61]. Maximal flight distances of 3–10 km have also been reported
for An. gambiae based on laboratory experiments using flight mills [62]; however, these
may not give realistic values compared with field studies [61]. Here, the average flight
range for An. gambiae (846 m) was also used for An. paludis. Finally, ‘distance to feature’
raster surfaces were generated, calculating for each pixel the distance from that pixel to the
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nearest patch of a specific land cover class. This was performed for the forest (i.e., distance
to the nearest forest edge), fallow, forest and fallow classes combined, static water, flowing
water, and swamp classes.

2.4.3. Vegetation and Water Indices

Two vegetation indices, NDVI [63] and SAVI [64], along with two water indices,
NDWI [65] and MNDWI [66], were also calculated. These index values typically vary over
time due to phenological and rainfall patterns. A median reducer was applied over the full
time periods of mosquito data collection in each site for each of the indices. These median
composites represent more ‘typical’ vegetation and water index values over the time period,
avoiding the influence that specific or outlying phenological and rainfall patterns could
have on single-date images.

2.5. Climatic Data

CHIRPS precipitation data were used to quantify the seasonal precipitation variability,
both spatially and temporally, across the mosquito data collection period of the two study
areas. The daily CHIRPS product was here converted to a monthly mean product (mean
mm/day) for August 2014 to December 2019 for Lodja and for August 2015 to December
2017 for Kapolowe. An additional five months of data prior to the commencement of
mosquito data collection was included to assess the influence of rainfall values in the
months preceding mosquito data collection. The spatial resolution of these data is 0.05◦;
however, to avoid artificial pixel-edge boundaries, the data are here smoothed using a 10 km
kernel size moving window to generate a smoothed precipitation surface for each month.
Each output pixel value corresponds to the mean precipitation value of the kernel area
centred on the location of that pixel for that given month. To quantify temporal variability
in land surface temperature, MODIS MOD11A1.061 Terra Land Surface Temperature (LST)
and Emissivity daily global 1 km data [55] were used to calculate monthly mean LST data
sets for the period five months preceding and for the duration of mosquito data collection.

2.6. Random Forest Analysis and Predictive Risk Modelling

The remote-sensing-derived and environmental raster data sets were combined into
a single data cube for each 50 km × 50 km study area at a 10 m spatial resolution. The
coarser bands (such as the CHIRPS precipitation and MODIS LST data) were effectively
resampled to a higher level of detail, with multiple 10 m pixels (of the same value) in the
data cube corresponding to a single original CHIRPS or MODIS pixel extent.

The mosquito data were then split into separate calendar month datasets (48 in total
for Lodja and 24 for Kapolowe). For each of these, the variables contained as layers in the
data cube were extracted. For each month of mosquito data collection, the rainfall values for
the current and preceding five months were extracted on a rolling basis and were recorded
in a consistent manner (rainfall in current month, rainfall0, rainfall in preceding month,
rainfall-1, etc.). Extracted data from all months were then recompiled into species-specific
data sets, combining the data from each of the two study areas for each species.

Modelling of the explanatory variables (comprising the topographical variables, land
cover class distributions (proportional coverage of individual land cover classes, and the
distance to the nearest patch of key land cover type), vegetation indices, and the current
and preceding five months of precipitation and LST data) was performed in relation to
mosquito abundance data for each mosquito species using RF analysis. Mosquito data from
the two study sites were pooled for each species, with correlation plots for the explanatory
variables (Table 1) produced (available in Supplementary Information, Figures S1 and S2,
which differ slightly due to different species average flight ranges) prior to feature selection
being performed to identify and retain a subset of only those variables that were statistically
relevant to the mosquito abundance. Given the high correlation between NDVI and SAVI,
as shown in the correlation plots, SAVI was disregarded from further analysis. Feature
selection used the Boruta method, which implements a feature selection algorithm designed
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as a wrapper around an RF algorithm [67], and was performed in R (v4.0.3) using the Boruta
(v7.0.0; [68]) and randomForest (v4.6.14, [69]) packages.

The Boruta algorithm provides a stable and unbiased selection of important and
non-important features by comparing the relevance of the real features to that of random
probes [69]. This works by firstly adding randomness to the data set by creating multiple
shuffled copies of all features, which are termed as shadow features. It then trains an RF
classifier on this extended dataset (including the shadow features) and applies a feature
importance measure to evaluate the importance of each feature. In each iteration, this
process assesses whether the real feature has a higher importance than its shadow features
(whether the feature shows a higher Z score than the maximum Z score of the corresponding
shadow features), removing features which are deemed unimportant. The process is
repeated until the status of all features is identified as important or unimportant or until a
user-defined limit of RF runs is achieved [70]. This process identifies all features that are
relevant, either strongly or weakly, to the response variable. This differs from the minimal
optimal method of more traditional feature selection methods, which, while producing
a minimal set of features and minimising the error of the RF model, can over-prune and
discard some relevant variables. The Boruta method of feature selection has been shown
to be highly effective and has been recommended above alternative feature selection
methods [71].

Once a series of parsimonious variables had been identified by the Boruta feature
selection for each of the three mosquito species, each species-specific dataset was split
randomly into separate training (80%) and validation (20%) datasets. RFs were used in
a regression capacity to model the relationships between mosquito abundance and the
parsimonious set of response variables.

RF hyperparameter tuning was performed, with the internal RF parameters (number
of trees, minimum leaf population, maximum nodes, number of variables per split, and
bag fraction) tuned iteratively to identify the best performing model, determined by the
highest R2 value when comparing predicted values to the observed values for the validation
data set. For all sites and mosquito species, the RF model parameters that produced the
highest R2 values between the predicted and observed values are as follows: number of
trees = 200, minimum leaf population = 1, maximum nodes = unlimited, and variables per
split =

√
number of variables. Optimal bag fraction values did vary for each species, with

optimal values being 0.7 (An. gambiae s.l.), 0.91 (An. funestus), and 0.6 (An. paludis). RF
parameter tuning results are available in Supplementary Information (Tables S3–S5).

With the optimal RF parameters established, each species-specific model was applied
predictively [30] for both study areas. All analyses were performed within Google Earth En-
gine, except for stepwise variable removal using the Boruta method, which was performed
in R (v4.2.2, [72]).

2.7. Open Buildings

Open Buildings V1 Polygons data [73], available via Google Earth Engine, were used
to identify building footprints within the study areas. This dataset identifies building
outlines from 50 cm high-resolution imagery and contains 516 million building detections
across 19.4 million km2 of the African continent. Each building has an associated confidence
score as a measure of uncertainty that a feature is correctly identified as a building. All
buildings with a confidence score of <60% were disregarded, retaining a total of 78,885 and
169,204 buildings for the Lodja and Kapolowe study areas, respectively. For each building,
the mean predicted abundance for each species for each month was extracted using zonal
statistics in QGIS (v3.28.0).
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3. Results
3.1. Mosquito Survey Data

A total of 45,844 mosquito captures were recorded in this study. In Lodja (2015–2019),
49.7% of mosquito collections comprised An. gambiae s.l., followed by An. paludis (43.1%)
and An. funestus (5.9%) (Table 3). In Kapolowe (2016–2017), An. gambiae s.l. exhibited lower
overall numbers and proportions than those of Lodja (29.0%), with a far higher catch of An.
funestus (67.4%), followed by lower catches of An. paludis (3.6%).

Table 3. Total number and proportion of Anopheles species collected from Lodja (2015–2017 and 2019)
and Kapolowe (2016–2017) using human landing catches from eight different houses each month for
each site.

Site Year An. gambiae s.l. An. funestus An. paludis Total

Lodja 2015 4143 (51.0%) 477 (5.9%) 3503 (43.1%) 8123
2016 4748 (48.7%) 520 (5.3%) 4486 (46.0%) 9754
2017 3153 (47.5%) 305 (4.6%) 3186 (47.9%) 6644
2019 3295 (52.1%) 69 (1.1%) 2955 (46.8%) 6319

All years 15339 (49.7%) 1371 (4.5%) 14130 (45.8%) 30840
Kapolowe 2016 2702 (44.6%) 2936 (48.4%) 423 (7.0%) 6061

2017 1656 (18.5%) 7171 (80.2%) 116 (1.3%) 8943
All years 4358 (29.0%) 10107 (67.4%) 539 (3.6%) 15004

For Lodja, An. gambiae s.l. peaked in April-May 2015 and December 2016, whereas
An. paludis numbers were greatest in July-August 2015, December-January 2016, and August
2016 (Figure 4). Although far fewer An. funestus were collected in Lodja, the largest counts
were collected in January-February 2015 and February 2017. For Kapolowe, An. gambiae s.l.
abundance peaked in February-March 2016 and December-March 2017, with the highest
counts of An. funestus observed in April 2017. Although fewer An. paludis were collected,
the highest capture numbers were observed in February-April 2016.

3.2. Land Cover Classification

The land cover classifications successfully characterised the rural complex and
wetland areas across the Lodja and Kapolowe study areas (Figure 5), and the land
cover class coverages are displayed in Table 4. The overall classification accuracies were
90.60% for Lodja and 90.04% for Kapolowe, and the error matrices are presented in
Supplementary Information (Tables S1 and S2).

3.3. Random Forest Regression Analysis

The Boruta feature selection of explanatory variables achieved parsimonious models
for the abundance of each species, retaining 30 (An. gambiae s.l.), 30 (An. funestus), and
26 (An. paludis) variables for the combined Lodja and Kapolowe data (Table 5). RF regression
analysis ranked the relative importance values of the biogeographical variables in relation
to An. gambiae s.l., An. funestus, and An. paludis abundance. These importance rankings
indicate that, for all species at both sites, the climatic variables of rainfall and land surface
temperature (LST) were predominantly identified as being of the highest importance,
although the month in relation to mosquito collection (i.e., the month in which a given
mosquito sample was collected or any of the preceding five months) varied between species
and sites.
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Figure 4. Monthly Anopheles collection data using human landing catches (HLC) from (a) Lodja in
2015–2017 and 2019 and (b) Kapolowe in 2016–2017. Monthly mosquito numbers are the sum of all
mosquitoes collected at the eight HLC sampling locations in that given month.

3.4. Predictive Risk Modelling

RF-predicted abundance surfaces were generated for each month and for each mosquito
species at the two study sites (January 2015–December 2017 and January 2019–December
2019 for Lodja and January 2016–December 2017 for Kapolowe). The predicted surfaces for
all months for all species are presented in Supplementary Information (Figures S3–S20).
Specific examples showing the spatial variability in predicted abundance for the three
species in Lodja in November 2015 are presented in Figure 6, and Figure 7 shows the
seasonal variability in predicted abundances over a year, which here is for An. funestus in
Kapolowe in 2016.
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Table 4. Land cover class coverages for the Lodja and Kapolowe study areas.

Land Cover Class Lodja Kapolowe

Forest 61.67% (1554.92 km2) 12.53% (320.40 km)
Fallow 16.48% (415.64 km2) 13.93% (355.98 km2)

Grassland 12.80% (322.71 km2) 11.30% (288.93 km2)
Agriculture 7.00% (176.46 km2) 41.59% (1063.07 km2)

Built-up 0.99% (25.05 km2) 3.15% (80.51 km2)
Swamp 0.00% (0.00 km2) 11.74% (300.02 km2)

Static water 0.81% (20.51 km2) 5.52% (141.14 km2)
Flowing water 0.25% (6.24 km2) 0.25% (6.33 km2)

Table 5. Random Forest variable importance rankings of explanatory variables retained after variable
stepwise removal for An. gambiae s.l., An. funestus, and An. paludis. Rainfall-x, where -x is the num-
ber of months prior (rainfall0 = current month, rainfall-1 = one month prior, etc.), PC = proportional
coverage of, dist = distance to, bu = built-up, fal = fallow, forest = forest, forfal = forest and fallow
combined, grass = grassland, swamp = swamp, ag = agriculture, fw = flowing water, sw = static
water, NDWI = Normalised Difference Water Index, NDVI = Normalised Difference Vegetation Index,
SAVI = Soil Adjusted Vegetation Index, MNDWI = Modified Normalised Difference Water Index,
LST = Land Surface Temperature, Importance = mean decrease in accuracy of species abundance if
variable is removed from the random forest model.

An. gambiae s.l. An. funestus An. paludis

Importance Ranking Variable Importance Variable Importance Variable Importance

1 LST-4 13.57 rainfall-2 11.61 rainfall-1 11.11
2 rainfall0 12.93 LST-5 9.91 rainfall0 9.57
3 rainfall-1 11.83 LST-1 9.54 rainfall-2 9.21
4 LST-3 10.51 rainfall-3 8.56 LST-1 8.90
5 rainfall-5 10.16 PCforfal 7.85 LST0 8.77
6 rainfall-2 9.70 PCforest 7.57 LST-4 8.53
7 rainfall-3 9.49 distforest 7.53 rainfall-5 7.74
8 LST-2 9.42 PCswamp 7.46 PCgrass 7.26
9 rainfall-4 9.34 distforfal 7.29 distsw 7.24
10 LST-5 8.40 PCgrass 7.28 rainfall-4 7.19
11 PCgrass 8.03 distswamp 7.26 LST-3 6.93
12 PCswamp 6.84 LST0 6.81 PCforest 6.78
13 LST0 6.73 elevation 6.78 distswamp 6.76
14 LST-1 6.60 distsw 6.70 elevation 6.66
15 distforest 6.59 rainfall-1 6.55 distforest 6.59
16 PCforfal 6.11 LST-4 6.29 PCsw 6.55
17 distswamp 5.93 PCsw 5.46 LST-

2 6.16
18 distforfal 4.97 rainfall-5 5.33 NDWI 5.82
19 PCsw 4.95 distfal 5.13 LST-5 5.67
20 PCforest 4.80 PCag 4.92 rainfall-3 5.53
21 PCbu 4.74 LST-3 4.81 NDVI 5.33
22 distsw 4.60 rainfall0 4.72 PCswamp 5.31
23 PCfw 4.58 rainfall-4 4.72 PCforfal 4.83
24 elevation 4.48 PCfal 4.48 distforfal 4.53
25 NDVI 4.41 MNDWI 4.41 distfw 3.24
26 distfw 3.52 LST-2 3.73 PCfal 3.09
27 NDWI 3.44 NDVI 3.35
28 distfal 3.43 NDWI 3.34
29 PCfal 3.39 aspect 2.97
30 PCag 3.01 distfw 2.80
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An. gambiae s.l. exhibited considerable variability in predicted mosquito abundance,
both spatially and temporally, in the Lodja and Kapolowe study areas. Temporal changes
in predicted abundances in Lodja broadly followed patterns observed in the field survey
data, with peaks consistently occurring in April-May and October-December each year
(Figures S3–S6). Spatial variability in predicted abundance was also marked, with areas of
higher abundance varying monthly. The highest abundances were observed around the
Lukene River and the town of Lodja, for example, in November 2015 (Figure 6) compared
with surrounding areas. This could potentially be due to the increased opportunities for
pools of water to form/remain in close proximity to the river, and due to the presence
of fishponds (static water) found in close proximity to Lodja. Kapolowe also exhibited
seasonal variability in predicted An. gambiae s.l. abundance, with lower abundances
predicted for May-September in both 2016 and 2017, with higher abundances predicted for
other months. The highest predicted abundances occurred in February in both 2016 and
2017 (Figures S7 and S8).

An. funestus exhibited more stable seasonal patterns in predicted abundance for Lodja,
with the highest localised abundance peaks occurring in January–May in 2015 and 2019 and
in August–September 2016, 2017, and 2019 (Figures S9–S12). Spatially, although predicted
abundances for extensive areas remained low, where foci of high abundance did occur,
these were typically in areas of open grassland surrounded by forest and in areas of static
water, where higher abundances persisted throughout the year. Temporal An. funestus
abundance peaks for Kapolowe occurred in February–May in both 2016 and 2017, with
generally lower counts observed through the remainder of the year (Figures S13 and S14).
Spatially, higher abundances were consistently observed for the Lake Tshangalele area,
comprising static water and swamp.

Peaks in An. paludis predicted abundance for Lodja typically occurred in July-August,
with broadly lower abundances predicted during the other periods (Figures S15–S18),
suggesting that these periods could consistently be periods of high risk for An. paludis in
this area, when abundances of An. gambiae s.l. and An. funestus are conversely at their lower
levels. Spatially, abundance peaks were distributed across the study area and did not exhibit
consistent ties to specific landscape features, although higher peaks were sometimes (such
as August 2015 and July–August 2016) observed in close proximity to the town of Lodja.
This, along with the Random Forest variable importance rankings (Table 5) is suggestive
that abundances are driven principally by rainfall and land surface temperature patterns.
For Kapolowe, a higher predicted abundance was generally observed in some sections of
the study area from April to June, with broadly lower abundances predicted for all other
months (Figures S19 and S20). Spatially, the Lake Tshangalele area generally retains higher
predicted abundances than the immediate surrounding area in April-October, although
the highest predicted abundances were observed in areas to the east and southwest of the
study area with higher levels of forest cover.

The predicted mosquito abundance values were extracted for the locations and times
of the validation data, with predicted versus observed abundances compared in a series of
scatter plots (Figure 8). This shows a high level of correspondence between the predicted
and observed abundance values, with R2 values of 0.707 for An. gambiae s.l., 0.861 for
An. funestus, and a lower value of 0.448 for An. paludis.
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When peaks of predicted abundance occur in areas of low human population densities,
malaria risk may remain low. However, if peaks of mosquito abundance coincide with areas
of higher population presence, this can result in increased malaria risk in these communities.
To assess the implications for the local community, predicted abundances were extracted for
each building, for each species, and for each month. Assessing abundances on a building-
by-building basis is valuable, as biting behaviour occurs mostly at night when people
are in their homes. Therefore, identifying patterns of risk for individual residences can
aid specifically targeting these locations with preventive measures. Figure 9 shows, for
a localised area of Kapolowe in February 2017, how An. gambiae s.l. abundance varied
considerably over relatively short distances. Buildings on the edge of Kapolowe, which are
closer to woodland and arable land cover, exhibited higher abundances than those of more
central buildings.
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area of Kapolowe in February 2017.

Figures 10 and 11 display the distributions of predicted abundances for each mosquito
species for all buildings within Lodja and Kapolowe, respectively, and their change over the
duration of the study period. This shows how the predominant species (and therefore biting
pressure from those species) differs throughout the study period. For example, Figure 10
shows that, in December 2016, far more buildings had a higher predicted abundance of
An. gambiae s.l. than that of An. paludis; however, the opposite was true for July-August
2016. Conversely, An. funestus had a more static profile, reflecting its preference for more
permanent water bodies.
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The climate and temperature for Kapolowe fluctuate more than they do for Lodja,
so the seasonal drop in An. gambiae s.l. numbers in May–September (the dry season) is
more pronounced (Figure 11). This shows that a large number of buildings have higher
abundances of An. gambiae s.l. during the wet season, with peaks in An. funestus occurring
slightly later when An. gambiae s.l. abundances drop, with a particularly high peak in
abundance in April 2017. Similar to at Lodja, this demonstrates that different species may
be driving biting pressure at buildings at different locations and time periods. An. paludis
exhibited a more stable profile at Kapolowe; however, it did exhibit a very high peak
abundance for a large number of buildings in April 2017.
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4. Discussion

In this study, cost-free multi-temporal remote sensing data, Google Earth Engine,
and in situ mosquito sampling data were utilised to identify variables influencing the
distribution and abundance of three mosquito malaria transmission vectors and the relative
importance of their association. This research, which would not have been possible using
ground-based surveys alone, advances the understanding of how environmental dynamics
in the study regions influence the distributions of these mosquitos, and it provides risk
maps predicting seasonal hot-spots of mosquito abundance in this highly endemic malaria
region in the DRC.

4.1. Identifying Spatio-Temporal Drivers of Malaria Risk

Our first objective, to identify the key variables driving Anopheles mosquito species
distribution and abundance, can be answered from our analysis. The distributions of
An. gambiae s.l., An. funestus, and An. paludis are, in the Lodja and Kapolowe study
areas, related to a number of biogeographical variables, but amongst these, principally,
is a strong association with rainfall and land surface temperature. Previous studies have
demonstrated that the amount and seasonality of rainfall in sub-tropical Africa drastically
affect the occurrence and productivity of mosquito larval habitats, limiting the distribution
of certain Anopheles species [8]. Rainfall is of particular importance, as higher rainfall
generates more larval sites, particularly for species such as An. gambiae s.l., which rely
on temporary pools for larval habitats. With the onset of higher rainfall, it follows that
mosquito abundance increases. The time it takes from an egg to become adult is around
10–11 days [74], so mosquito numbers are expected to be higher if increased rainfall occurs
during both the month in which mosquitos are sampled and during the preceding month,
as was observed here for An. gambiae s.l. and An. paludis. An. funestus preferentially
exploits permanent water bodies and is therefore less vulnerable to short-term fluctuations
in rainfall. It should be noted that other previous studies, such as [75], did not find rainfall
to be important. While conducting continental-scale species distribution modelling of
An. gambiae, [75] found that temperature and vegetation (characterised by annual NDVI
and NDVI variability) were important predictors but that precipitation was not, suggesting
that their analysis shows this because rainfall can be highly correlated with other variables
that characterise the aridity gradient.

Land surface temperature influences both mosquito abundance and malaria inci-
dence. In general, African malaria vectors are most suited to a temperature range of
13–35 ◦C [76,77]. Land surface temperature, for example, was shown to be the main envi-
ronmental variable driving malaria vector abundance in Ethiopia [78]. Temperature also
influences the extrinsic incubation period of parasite development in the mosquito, which
is a key factor in malaria transmission [79]. Land surface temperature has been shown to be
a strong predictor of the deadliest and most common form of human malaria, Plasmodium
falciparum [80].

Although rainfall is crucial for providing larval sites, the factors driving mosquito
abundance are complex, and other factors are simultaneously at play, for example, vegeta-
tion, slope, and soil percolation, which vary in each area. Changes in development time
from immature aquatic stages to adults can also be affected by several factors. In laboratory
studies, temperature is known to influence developmental time and subsequent larvae and
adult survival [81], but it can also influence larval competition in water pools, potentially
leading to smaller adults and in turn affecting adult survival [82]. Furthermore, within a
single egg batch, early and late hatching was reported with increasing development times
for late hatches [83]. Late hatching is believed to be an adaptive strategy for dealing with
unstable larval sites (e.g., desiccation) and competition. Although rainfall is identified here
as a key variable influencing the abundance of all three mosquito species, other variables are
also influential. For example, both the proportional cover of and the distance to forests and
fallow was found to be of high importance for An. gambiae s.l., An. funestus, and An. paludis.
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This was also reported for other Anopheles species [84], with forest edges providing refugia
and non-human hosts for feeding.

4.2. Spatio-Temporal Risk Maps

The second objective was to predictively model mosquito distributions and their
seasonal variability, and here, both spatial and temporal variability in predicted mosquito
abundance for all three mosquito species is demonstrated. The predicted abundance
maps illustrate the importance of considering temporal variables, such as seasonal rainfall
and land surface temperature patterns, in addition to temporally static variables. Here,
seasonal rainfall and land surface temperature are both identified as key drivers of mosquito
abundance, resulting in clear variability in predicted abundances throughout the year in
response to these variables. By improving the capability of identifying seasonal hot-spots
of mosquito abundance, the improved targeting (both of specific localised areas of high risk
and of high-risk periods during the year) of intervention measures, such as larval source
management (LSM), is possible. Given increasing insecticide resistance and the resulting
reduction in effectiveness of some intervention methods (theorised to contribute to the
increase of five million recorded cases in 2016 compared with 2015 [3]), LSM interventions
may become increasingly important for wide-scale malaria control. In many malaria-
endemic regions, disease control activities and monitoring over large geographical areas
are exceptionally challenging for resource-constrained nations, such as the DRC, where a
large proportion of mosquito-borne disease cases are found but where monitoring cannot
currently be performed.

The response to getting the targets of the GTS back on track has been the ‘High Burden
to High Impact’ (HBHI) initiative led by the WHO and Roll Back Malaria partnership [85].
This strategy has been adopted by high-burden countries and is underpinned amongst
other factors by more timely and granular data that can be used to inform how limited
resources can be used for maximum impact and that can improve targeted policies to
empower countries to tailor the optimal mix of tools for a range of settings and engagement
with sectors beyond health. The approach we used in this study, therefore, fits neatly with
the HBHI initiative. By applying methods such as those presented here, high-risk areas,
down to the individual building level, can be identified in a cost-effective manner, enabling
the prioritisation of high-risk target regions for surveillance, monitoring, and treatment [8],
thus shrinking the geographical extents that need targeting in control activities. This can,
in turn, make an important contribution towards reducing morbidity and mortality from
this preventative disease in the DRC, and it can have a greater impact on reducing malaria
infection rates in children under the age of five, for whom the majority of deaths from
malaria are recorded. As such, it is of particular use for policy makers in developing
effective regional frameworks for malaria control and eradication [35], in line with the
HBHI. The value of utilising malaria vector risk maps for intervention decision making
was demonstrated in Zambia. Prioritising communities to receive indoor residual spraying
(IRS) based on the predictive probabilities of An. funestus led to the greatest decrease in
malaria, compared with concentrating IRS within a geographical area or prioritising IRS
to communities based on observed malaria incidence [86]. It is possible that a similar
approach could be adopted for other interventions.

Given that the mosquito species in this study bite in the evening, the type of a building
can influence risk. A building that is identified as high-risk based on mosquito abundance
may have less of a malaria risk if it is unoccupied during the evening, e.g., an industrial or
commercial building. A second consideration is house structure, which can also influence
malaria risk [87]. It was beyond the scope of this current study to determine these two
points, but they will be factored into future mapping.

4.3. Transferability of the Method

This method was designed to be transferable to enable wide uptake by practition-
ers in the field. To accompany this manuscript, a user manual was developed in mul-
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tiple languages (English, French, and Spanish) and was made openly available (https:
//doi.org/10.5281/zenodo.6973662, accessed on 1 August 2022), designed to provide
non-specialists with step-by-step instructions, thus enabling independent implementation
of these methods and avoiding reliance on external specialists [45]. By removing this
limitation and empowering local disease control agencies to integrate Earth observation
methods as a core element in their activities, it can enable them to independently generate
frequent maps of predicted mosquito abundances and distributions for user-defined time
periods and study areas as raster data products. This can enable the identification of hot-
spots of mosquito abundance—and therefore of potentially increased malaria transmission
risk—both spatially and seasonally, allowing more specific targeting by disease control
activities to concentrate on areas of the highest risk. As such, it is hoped that significant
improvements can be made in targeting resource-constrained disease control programmes,
reducing the burden of disease in malaria-endemic areas. Although the methodological
framework presented is transferable, it does require input data from the local study areas
in question to build site-specific predictive models. Although the utilized EO datasets are
available globally via Google Earth Engine, in situ longitudinal mosquito data collection
for the study areas of interest (here, collected monthly) from multiple locations within the
study areas are required. These data must be collected over at least one year to enable
variability in mosquito abundance to be related to temporally dynamic variables, such as
annual rainfall patterns. Appropriate training and validation locations for conducting the
land cover mapping stage of the analysis are also required. If these datasets are available,
the presented methods should be implementable across other malaria-endemic regions and
for other relevant mosquito species.

4.4. Future Development

This study identifies the key variables influencing mosquito distributions and abun-
dance in the Lodja and Kapolowe study areas; however, the limited sample size of mosquito
survey locations is acknowledged. Although predicted abundance maps for all three species
at the two study sites were generated, and although the validation for the observed ver-
sus predicted abundance produced strong levels of correspondence, future work should
look to expand the number of mosquito sampling locations, increasing their geographical
spread and the longitudinal time period over which they are collected. There is limited
understanding of the taxonomy of secondary African malaria vectors, as recent work has
revealed ambiguous species identification of An. paludis samples, which are now subject to
further genetic analysis. Host population abundance was not considered in this study with
regarding malaria risk but could be factored into future work.

Further work could also usefully assess the transferability of these methods to different
malaria-endemic areas and other mosquito species. This can enable the testing of different
modelling methods at different locations to compare the accuracy, ease of application,
transparency, and transferability between sites of different methods, which can progress
towards the development of a more generic framework approach to modelling mosquito
abundance using remote sensing datasets.

Additionally, the spatial resolution of the remote sensing datasets used here (10 m
Sentinel 1 and 2 data) may preclude the detection of small water features, which could act
as mosquito larval habitats, including features under tree cover. Evidence does, however,
suggest that, in sub-Saharan Africa, water bodies under trees are not productive Anopheles
habitats, with mosquitoes often preferring sunlit pools for larval habitats [7], potentially
reducing the influence of these features. Future studies could additionally conduct drone-
based surveys at higher levels of resolution to identify these features and to inform the
extent to which the current method is detecting them. Further longer-term studies could
also test the hypothesis that certain wetlands can act as refugia for mosquitoes (and there-
fore also for malaria transmission) during the dry season [32,88], serving as reservoirs for
mosquitoes and facilitating the expansion of malaria transmission through the broader
region in the wet season [19,32]. This potentially includes sites such as fish ponds, which are
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present close to Lodja, and permanent wetlands near Kapolowe. Sites such as these, once
identified, could be ideal targets for the application of larval source management activities.

5. Conclusions

This study confirms the potential of cost-free remote sensing data, Google Earth En-
gine, and Random Forests to generate temporally repeatable predictive models of mosquito
distribution and abundance over broad study areas to the individual building level. Al-
though demonstrated here on a regional level, the computational capacity of Google Earth
Engine offers opportunities for applying these methods to many different regions via
cloud computing given suitable in situ data. This overcomes a major challenge in many
malaria-endemic regions, where resource constraints inhibit broad-scale ground-based
monitoring, and where cost and infrastructure requirements have historically limited the
uptake of monitoring via remote sensing. Although the potential of such methods are
often recognised, accessibility to and the practical application of these methods are often
limited by a lack of Earth observation specialist knowledge. The development of the train-
ing materials describing the implementation of the methods described in this article can
overcome this reliance on EO specialist knowledge, which historically may have limited
the use of EO analysis in malaria programmes. By providing users with the means to
implement these methods independently within the context of their own programmes, EO
could play an increasingly significant role in informing malaria disease control activities
globally, improving the targeting of disease control activities and reducing the burden of
this disease in malaria-endemic regions.
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for An. Funestus; Table S5: Random forest parameter tuning for An. paludis; Figure S3: Predicted
counts of An. gambiae s.l. for the Lodja study area for (a) January 2015; (b) February 2015; (c) March
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Predicted counts of An. gambiae s.l. for the Kapolowe study area for (a) January 2017; (b) February
2017; (c) March 2017; (d) April 2017; (e) May 2017; (f) June 2017; (g) July 2017, (h) August 2017;
(i) September 2017; (j) October 2017; (k) November 2017; (l) December 2017; Figure S9: Predicted
counts of An. funestus for the Lodja study area for (a) January 2015; (b) February 2015; (c) March
2015; (d) April 2015; (e) May 2015; (f) June 2015; (g) July 2015, (h) August 2015; (i) September 2015;
(j) October 2015; (k) November 2015; (l) December 2015; Figure S10: Predicted counts of An. funestus
for the Lodja study area for (a) January 2016; (b) February 2016; (c) March 2016; (d) April 2016; (e) May
2016; (f) June 2016; (g) July 2016, (h) August 2016; (i) September 2016; (j) October 2016; (k) November
2016; (l) December 2016; Figure S11: Predicted counts of An. funestus for the Lodja study area for
(a) January 2017; (b) February 2017; (c) March 2017; (d) April 2017; (e) May 2017; (f) June 2017; (g) July
2017, (h) August 2017; (i) September 2017; (j) October 2017; (k) November 2017; (l) December 2017;
Figure S12: Predicted counts of An. funestus for the Lodja study area for (a) January 2019; (b) February
2019; (c) March 2019; (d) April 2019; (e) May 2019; (f) June 2019; (g) July 2019, (h) August 2019;
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