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Abstract 

Insecticide resistance is a significant challenge facing the successful control of mosquito vectors globally. Bioassays are 
currently the only method for phenotyping resistance. They require large numbers of mosquitoes for testing, the availability 
of a susceptible comparator strain, and often insectary facilities. This study aimed to trial the novel use of rapid evaporative 
ionization mass spectrometry (REIMS) for the identification of insecticide resistance in mosquitoes. No sample preparation 
is required for REIMS and analysis can be rapidly conducted within hours. Temephos resistant Aedes aegypti (Linnaeus) 
larvae from Cúcuta, Colombia and temephos susceptible larvae from two origins (Bello, Colombia, and the lab reference 
strain New Orleans) were analyzed using REIMS. We tested the ability of REIMS to differentiate three relevant variants: pop-
ulation source, lab versus field origin, and response to insecticide. The classification of these data was undertaken using 
linear discriminant analysis (LDA) and random forest. Classification models built using REIMS data were able to differen-
tiate between Ae. aegypti larvae from different populations with 82% (±0.01) accuracy, between mosquitoes of field and lab 
origin with 89% (±0.01) accuracy and between susceptible and resistant larvae with 85% (±0.01) accuracy. LDA classifiers 
had higher efficiency than random forest with this data set. The high accuracy observed here identifies REIMS as a poten-
tial new tool for rapid identification of resistance in mosquitoes. We argue that REIMS and similar modern phenotyping 
alternatives should complement existing insecticide resistance management tools.
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Insecticide resistance is one of the most significant challenges posed 
to mosquito control programs. The control of mosquito vectors, in-
cluding Aedes aegypti (Diptera: Culicidae) (Linnaeus) the principal 
vector for the dengue, Zika, and chikungunya viruses, relies heavily 
on the use of insecticides to reduce disease burden. There are only 
four insecticide classes which are licensed for use in public health: 
organophosphates, organochlorines, pyrethroids, and carbamates. 
Resistance has now been reported in Ae. aegypti to all four of these 
chemical classes (Ranson et al. 2010, Vontas et al. 2012, Moyes et al. 
2017). Insecticide resistance in Ae. aegypti is also spread worldwide 
with reports in South America (Guedes et al. 2020), North America 
(Marcombe et al. 2014), Asia (Amelia-Yap et al. 2018), Europe 
(Seixas et al. 2017), Africa (Weetman et al. 2018), and Oceania 
(Demok et al. 2019). This trend is compromising effective vector 
control (Viana-Medeiros et al. 2007, Bisset et al. 2011, Marcombe 
et al. 2011).

Insecticide resistance management (IRM) which aims to prevent, slow, 
or reverse the emergence of resistance is therefore crucial for sustainable 
vector control. The first step in IRM is to monitor local populations for 
the development of insecticide resistance whilst establishing its impact 
on effective vector control (Dusfour et al. 2019). Current methods for 
resistance monitoring include bioassays, biochemical assays, and molec-
ular testing. Biochemical assays and molecular testing are used to identify 
the specific mechanisms responsible for insecticide resistance, allowing 
for appropriate IRM strategies to be implemented (Hemingway et al. 
2013). However, insecticide bioassays (e.g., WHO tube and CDC bottle 
assays) are the only current method for identifying (phenotyping) resist-
ance in mosquitoes. Bioassays have low sensitivity, lengthy completion 
times (24 hr) and often only detect high levels of resistance which may 
be too late for alternative measures to be deployed (Dusfour et al. 2019). 
Other limitations include the requirement of large numbers of individual 
mosquitoes, and the availability of a comparable susceptible strain 
(World Health Organization (WHO) 2016). Alternative phenotyping 
methods that can surpass those limitations are necessary.

Rapid evaporative ionization mass spectrometry (REIMS) is a 
relatively new technology which provides a rapid method of mass 
spectrometry without the need for any sample preparation. Samples 
are burned by diathermy and the resultant aerosols are collected, 
ionized, and analyzed by mass spectrometry (Schäfer et al. 2009; 
Balog et al. 2010, 2013, 2015). The spectra, collected in negative 
ion mode, largely reflect the lipid composition of the sample, and 
are collected over a wide range of m/z values. The spectra are then 
discretized by binning, creating a data matrix that is further processed 
by dimension reduction and classification (Balog et al. 2010). The 
potential applications of REIMS are vast with its previous suc-
cessful applications including distinguishing cancerous tissue from 
healthy tissue (Alexander et al. 2017, St John et al. 2017, Phelps et 
al. 2018), authentication of food products (Balog et al. 2016, Black 
et al. 2017, Verplanken et al. 2017, Guitton et al. 2018, Rigano et 
al. 2019), microbial species identification (Strittmatter et al. 2013, 
2014), monitoring of bacterial growth and recombinant protein ex-
pression (Sarsby et al. 2021), and the identification of rodent species 
and sex from fecal matter (Davidson et al. 2019). REIMS has also 
been shown to be a highly effective method for species and sex de-
termination in Drosophila adults and larvae (Wagner et al. 2020).

Here we present a proof-of-concept for the novel use of REIMS 
as a potential rapid tool for the identification of insecticide resistance 
in Ae. aegypti larvae. We analyzed three Ae. aegypti populations, 
previously profiled for susceptibility to the larvicide temephos 
(Morgan et al. 2021): a resistant population originating from field 
collected mosquitoes from Cúcuta (Colombia) and two susceptible 
populations, one field originating population from Bello (Colombia) 

and a susceptible laboratory reference strain, New Orleans. The 
results demonstrate the potential of REIMS for phenotyping insec-
ticide resistant mosquitoes with relevant discriminatory power and 
faster and less labor-intensive methods which may be used to com-
plement existing IRM strategies.

Materials and Methods

Mosquito Samples and Rearing
Aedes aegypti larvae from three populations previously tested for 
susceptibility to temephos (Morgan et al. 2021) were used in this 
study. Two field populations were used, one temephos resistant 
(field resistant [FR]) and one susceptible (field susceptible [FS]), the 
susceptible Ae. aegypti laboratory strain New Orleans (lab suscep-
tible [LS]) was also used (Fig. 1). LC50 values were 0.06, 0.02, and 
0.008 ppm in the field resistant, field susceptible, and lab susceptible 
populations respectively with resistance rations of 9.0 (FR) and 2.8 
(FS) when compared to the LS population (Morgan et al. 2021). 
Ae. aegypti were reared to fourth instar larvae following a standard 
rearing protocol and under standard conditions within insectaries. 
Standard conditions were 27°C and 70% relative humidity with an 
11-hr day/night cycle with 60-min dawn/dusk simulation periods, 
using a lighting system of 4× Osram Dulux 26W 840 lights. Eggs 
were submerged in a hatching broth of 350 ml dH2O, 0.125 g nu-
trient broth (Sigma-Aldrich, Dorset, UK) and 0.025 g brewer’s yeast 
(Holland & Barrett, Ormskirk, UK) for 48 hr (Zheng et al. 2015). 
Once hatched, larvae were reared at a density of 0.5 larva/ml in 
dH2O and fed ground fish food (AQUARIAN advanced nutrition) 
at increasing quantities per day (day 3 = 0.08  mg/larva, day 4 = 
0.16 mg/larva, day 5 = 0.31 mg/larva, day 6 = 0 mg/larva) (Carvalho 
et al. 2014). For each experimental group (FR, FS, LS) four bio-
logical replicates were conducted, using eggs from different females 
each submerged on different days. Seven days after egg submission 
larvae were removed and stored at −20°C until REIMS analysis. The 
storage period ranged from 32 to 36 wk (Table 1). The number of 
larvae analyzed per biological replicate ranged from 8 to 15 with a 
total of 42–51 larvae per experimental group (Table 1).

Rapid Evaporative Ionization Mass Spectrometry 
Analysis
Rapid evaporative ionization mass spectrometry analysis was 
conducted following the detailed methods outlined by Wagner et 
al. (2020). Larvae were burned using a monopolar electrosurgical 
pencil (Erbe Medical UK Ltd, Leeds); the electric current was pro-
vided to the pencil by a VIO 50 C electrosurgical generator, a black 
conductive rubber mat acted as the counter electrode to enable the 
flow of electricity through the sample. The entire biomass of each 
larva was burned, and the aerosols produced were aspirated through 
tubing attached to the pencil into the REIMS source using a nitrogen 
powered venturi valve. Leucine enkephalin (Waters, UK) in propan-
2-ol (CHROMASOLV, Honeywell Riedel-de-Haën) was used as a 
lock mass solution and continuously introduced via a whistle in the 
venturi tube at a flow rate of 30 µl min−1. REIMS was conducted 
using a Synapt G2Si instrument ion mobility equipped quadrupole 
time of flight mass spectrometer (Waters, UK). A heated impactor 
(Kanthal metal coil at 900°C) within the REIMS source was used to 
decluster the ionized particles. Mass spectra were acquired in neg-
ative ion mode at a rate of 1 scan per second over a mass/charge 
range of m/z 50–1,200. All larvae were analyzed in a single day 
in a random order created by a random number generator within 
Microsoft excel.
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Data Analysis
The raw data files were imported into the Offline Model Builder 
software (OMB-1.1.28; Waters Research Centre, Hungary). Each 
data file/sample contains the burn event of only one larva, therefore 
the option to create one spectrum per sample was selected. The back-
ground was subtracted, and the spectra were corrected using the lock 
mass (leucine enkephalin, m/z 554.26). The normalized intensities 
were then binned into 0.1 m/z wide groups. The binned mass spectra 
data were then imported into R (version 3.6.3) (R Core Team 2020) 
for further analysis.

Dimension reduction was carried out by principal components 
analysis (PCA) using the R package factoextra (version 1.0.7) 
(Kassambara and Mundt 2020). Different numbers of principal 
components were then extracted (10, 20, 40, 60, 80, 100) and 
used for the classification of samples into categories: population, 

population type, and resistance status. Classification was conducted 
using two different model types; linear discriminant analysis (LDA) 
and random forest (RF), with the data randomly split into 70% 
training data and 30% test data. Each model was built using var-
iable numbers of principal components (PCs) extracted using PCA 
and the most accurate model was selected and used for analysis. 
LDA models with varying numbers of PCs were built using the R 
package MASS (version 7.3.53) (W. N. Venables and B. D. Ripley 
2002), model validation was conducted by plotting receiver oper-
ating characteristic curves (ROC) and selecting the model with the 
highest area under ROC curve (AUC) (Supp Fig. 2–11 [online only]). 
Random forest models were validated using the R package caret 
(version 6.0.88) (Kuhn 2021) to select the model with optimum 
PCs, number of variables available for splitting at each tree node 
(mtry), and tree number. The random forest models with the highest 

Fig. 1. Block diagram of the experimental approach. This study utilized insecticide resistant and susceptible larvae of the mosquito Ae. aegypti. The resistant 
larvae originated from Cúcuta, Colombia and the susceptible larvae had dual origin, field samples from Bello, Colombia (Field Susceptible) and the New Orleans 
lab strain (Lab Susceptible). Individual larvae from each experimental group were analyzed using REIMS to acquire individual mass spectra for each sample. The 
data acquired through REIMS was background and lock mass corrected and binned into 0.1 m/z groups. Dimension reduction was conducted using PCA before 
LDA and random forest classification model building and testing.
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overall accuracy following building in caret were selected for use in 
the analysis with models built using the R package randomForest 
(version 4.6.14) (Liaw and Wiener 2002). Random under sampling 
in the caret package was used to balance classes before RF analysis 
as this showed an increase in overall model performance. Class im-
balance did not affect the performance of LDA models, as no differ-
ence in classification accuracy was observed between the different 
groups within the models, therefore no over or under sampling was 
required. LDA and RF models with parameters as selected by model 
validation were each ran 20 times using a different random split 
of test (30%) and training (70%) data. The model statistics: per-
centage accuracy, standard error of means (SEM), and range, were 
then averaged across all 20 replicates. LDA following PCA was also 
used to visualize the separation of samples, plots were created using 
the R packages ggplot2 (version 3.3.2) (Wickham 2016) and ggpubr 
(version 0.4.0) (Kassambara 2020).

The experimental design is outlined in Fig. 1. A code for 
analyzing REIMS data using LDA and random forest classification 
models which can be applied to other similar datasets is available 
in Supp File 1 (online only). All raw data files are available in the 
MetaboLights database under the accession number MTBLS4129. 
The data matrix, created in OMB and used for subsequent analysis 
in R is available in Supp Table 1 (online only).

Results

Population Source
Visualization of the data, following PCA-LDA analysis showed a 
clear discrimination between Ae. aegypti larvae from different ge-
ographical origins (Fig. 2A). All three populations; field susceptible, 
field resistant, and lab susceptible were separated in linear discrim-
inant one whilst the field resistant population was separated from 
the two susceptible populations in linear discriminant two, thus 
demonstrating that LD1 is representative of population and LD2 
of resistance to insecticide. A PCA-LDA conducted on the data 
with randomly assigned classifications showed no separation (Supp 
Fig. 1 [online only]) demonstrating that the observed separation of 
classifications is due to variations between populations and not due 
to chance. The LDA model built using the REIMS data was able to 
correctly classify 82% (±0.01) of Ae. aegypti larvae into the correct 

population (Fig. 2B). The lab susceptible population had the highest 
accuracy (90% ± 2.0) and had the largest sample number whilst 
the population with the lowest sample number, field resistant, had 
the lowest accuracy (77% ± 2.2). When classification was conducted 
using a random forest model accuracy was lower, but the model was 
still able to correctly assign 76% of individual Ae. aegypti larvae to 
the correct population (Fig. 2C).

Population Type (Lab and Field)
A clear separation is observed when Ae. aegypti larvae from field 
origin are compared to larvae from a standard laboratory reference 
strain using PCA-LDA (Fig. 3A and B). The classification models had 
high accuracy with 89% (±0.01) of individual larvae classified to 
the correct population type with the PCA-LDA model (Fig. 3C) and 
83% (±0.01) correctly classified by random forest (Fig. 3D). Larvae 
from field origin had higher classification accuracy (86% ± 1.8) than 
those of lab origin (80% ± 2.4) when the RF model was used. When 
the LDA model was used the accuracy was similar for both groups 
(Field = 90% ± 0.8, Lab = 89 ± 2.0).

Insecticide Sensitivity Profile
Analysis of the REIMS data was also conducted to investigate the 
potential for determination between insecticide resistant and suscep-
tible Ae. aegypti larvae (Fig. 4). PCA-LDA classification models show 
85% (±0.01) accuracy in assigning larvae to the correct resistance 
status, with 75% (±2.8) of temephos resistant larvae being correctly 
assigned (Fig. 4C). The classification accuracy was higher for suscep-
tible individuals (89% ± 1.1), this is likely due to the larger sample 
size of susceptible individuals available for training the model (Fig. 
4C). Whilst the random forest classification model was less accurate 
it still had a correct classification rate of 78% (±0.02) correctly clas-
sifying 73% (±3.3) of resistant individuals and 79% of susceptible 
individuals (Fig. 4D).

A similar classification accuracy is achieved when field resistant 
larvae are compared only to susceptible larvae from a laboratory 
strain (Fig. 5) as when field resistance larvae are compared to sus-
ceptible larvae from field origin (Fig. 6). When only a field suscep-
tible comparator strain is used the classification accuracy was 88% 
(±0.01) using LDA (Fig. 6C) and 84% (±0.02) using RF (Fig. 6D). 
When only a lab susceptible comparator strain is used the classifi-
cation accuracy was similar with accuracies of 87% with LDA (Fig. 
5C) and 82% with RF (Fig. 5D). The similarity in classification ac-
curacy observed here demonstrates that a field equivalent susceptible 
strain may not be necessary for identification of insecticide resistance 
in field Ae. aegypti larvae using this method, which is beneficial with 
the decreasing availability of field relevant susceptible populations.

Discussion

Early detection of resistance in mosquito populations is key to ef-
fective IRM and in reducing its effect on transmission of disease 
(Dusfour et al. 2019). The current principal methods for monitoring 
resistance are bioassays, biochemical assays, and molecular testing. 
Biochemical assays and molecular testing can be used to iden-
tify resistance in mosquitoes and are also important for the iden-
tification of mechanisms conferring resistance which can be useful 
when deciding on the most effective control method and in the 
development of novel control strategies (Brogdon 1989, World 
Health Organization (WHO) 1998, Corbel and N’Guessan 2013, 
Hemingway et al. 2013, Faucon et al. 2017, Dusfour et al. 2019). 
Current understanding of resistance has been developed through 

Table 1. Summary data of the Ae. aegypti samples analyzed via 
REIMS. Time larvae stored at −20°C in weeks for each replicate 
and the number of larvae analyzed in each replicate and the total 
number for each experimental group (n)

Population Replicate Storage Weeks n 

Lab Susceptible 1 36 8
2 36 15
3 36 13
4 32 15

Total 32–36 51
Field Susceptible 1 32 12

2 34 13
3 33 13
4 32 13

Total 32–34 51
Field Resistant 1 36 9

2 32 14
3 36 10
4 36 9

Total 32–36 42
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Fig. 2. REIMS discrimination of Ae. aegypti samples by population. Combined PCA-LDA separation of the three Ae. aegypti populations using REIMS mass 
spectra (A). Dimension reduction was conducted using principal components analysis (PCA), 40 principal components were selected for linear discriminant 
analysis (LDA). The number of PCs was determined by selecting the model with the lowest area under the ROC curve (AUC) (Supp Fig. 2 [online only]). Separation 
is shown in both linear discriminant one and linear discriminant 2. All populations separated in linear discriminant 1 whilst field resistant separated from the two 
susceptible populations in LD2. Classification of samples into population using PCA-LDA (B) and random forest models (C), showing the percentage of samples 
classified to each group, standard error of the mean (SEM), and the percentage range across all replicates. Models were built and tested 20 times each with a 
different set of training (70%) and test (30%) data. Accuracy percentages, SEM, and range were averaged across all 20 replicates. The PCA-LDA classification 
model had a higher accuracy (82% ± 0.01) than the random forest model (76% ± 0.02), correctly assigning 82% of individuals to their respective population. 
Random forest models were built using 20 PCs to obtain the highest accuracy of models tested (Supp Fig. 3 [online only]).
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molecular and biochemical studies which have identified common 
resistance mechanisms including target site insensitivity and meta-
bolic detoxification (Hemingway et al. 2004). Identification of these 
resistance mechanisms has been vital to increasing understanding of 
resistance.

Biochemical and molecular assays are important for increasing 
understanding of resistance mechanisms however there is an oper-
ational need for scalable rapid identification tools which are less 

labor intensive thereby yielding faster results which therefore have 
the potential to have more direct impact on decision making in 
the field. Insecticide bioassays are currently the only method for 
phenotyping resistance in mosquitoes (World Health Organization 
2013, 2016). They are limited to detecting high levels of resistance 
only which is often too late for alternative control methods to 
be deployed and high level of variation between experiments is 
often observed (Owusu et al. 2017). Bioassays also require large 

Fig. 3. REIMS discrimination of Ae. aegypti by population type (lab and field). Combined PCA-LDA separation of lab and field Ae. aegypti populations using 
REIMS mass spectra (A and B). Dimension reduction was conducted using principal components analysis (PCA), 40 principal components were selected for 
linear discriminant analysis (LDA). The number of PCs was determined by selecting the model with the lowest area under the ROC curve (AUC) (Supp Fig. 4 
[online only]). Classification of samples into resistance status using PCA-LDA (C) and random forest models (D), showing the percentage of samples classified 
to each group, standard error of the mean (SEM), and the percentage range across all replicates. Models were built and tested 20 times each with a different 
set of training (70%) and test (30%) data. Accuracy percentages, SEM, and range were averaged across all 20 replicates. The LDA-PCA classification model had 
a higher accuracy (89% ± 0.01) than the random forest model (83% ± 0.02), correctly assigning 89% of individuals to their respective resistance status. Random 
forest models were built using 20 PCs to obtain the highest accuracy of models tested (Supp Fig. 5 [online only]).
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numbers of mosquitoes, the availability of a comparable suscep-
tible strain, and insectary facilities (World Health Organization 
2013, 2016).

This study presents proof of concept for the use of rapid evap-
orative ionization mass spectrometry (REIMS) as a faster tool for 
monitoring of insecticide resistance which has the potential to di-
rectly inform vector control decision making. The data obtained 
by REIMS analysis was able to categorize resistance with 85% 
(±0.01) accuracy. This method also benefits from requiring no 

sample preparation, and rapid data acquisition. For this study rel-
atively small sample numbers were used, but high accuracy was 
still obtained. Accuracy of classification models has the potential to 
increase as the size of the training data set is increased, therefore sub-
sequent testing with higher sample numbers may yield even greater 
accuracy, however higher variability of samples (diet, ages, environ-
mental factors etc.) would need to be included to produce a robust 
model capable of dealing with fully wild samples (Dobbin et al. 
2008, Figueroa et al. 2012, Hanberry et al. 2012, Beleites et al. 2013, 

Fig. 4. REIMS discrimination of resistant and susceptible Ae. aegypti. Combined PCA-LDA separation of resistant and susceptible Ae. aegypti populations using 
REIMS mass spectra (A and B). Dimension reduction was conducted using principal components analysis (PCA), 40 principal components were selected for 
linear discriminant analysis (LDA). The number of PCs was determined by selecting the model with the lowest area under the ROC curve (AUC) (Supp Fig. 6 
[online only]). Classification of samples into resistance status using PCA-LDA (C) and random forest models (D), showing the percentage of samples classified 
to each group, standard error of the mean (SEM), and the percentage range across all replicates. Models were built and tested 20 times each with a different 
set of training (70%) and test (30%) data. Accuracy percentages, SEM, and range were averaged across all 20 replicates. The LDA-PCA classification model had 
a higher accuracy (85% ± 0.01) than the random forest model (78% ± 0.02), correctly assigning 85% of individuals to their respective resistance status. Random 
forest models were built using 20 PCs to obtain the highest accuracy of models tested (Supp Fig. 7 [online only]).
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Luan et al. 2020). The tool was also able to differentiate between dif-
ferent mosquito populations with 82% (±0.01) accuracy, suggesting 
other applications for the tool aside from resistance monitoring.

We also compared two different classification model types, linear 
discriminant analysis (LDA) and random forest (RF) both of which 
are commonly applied to the classification of samples using REIMS 
data (Cameron et al. 2016, St John et al. 2017, Davidson et al. 2019, 
Gredell et al. 2019, Wagner et al. 2020, Sarsby et al. 2021). LDA 
is often the classification method of choice for spectrometry-based 

phenotyping, including REIMS (Bonetti 2018, D’Hue et al. 2018, 
Gredell et al. 2019, Kenar et al. 2019, Liu et al. 2021, Wang et al. 
2021). The results of this study showed that LDA classification 
models were able to achieve comparable accuracy to the more com-
plex random forest models and in the case of our data performed 
better. Use of a simpler but equally accurate model is important in 
enabling the data analysis to be accessible to a variety of personnel 
working within vector control. The PCA-LDA method has previously 
been shown to be effective at classifying groups which show large 

Fig. 5. REIMS discrimination of field resistant and lab susceptible Ae. aegypti larvae. Combined PCA-LDA separation of the resistant and lab susceptible 
populations using REIMS mass spectra (A and B). Dimension reduction was conducted using principal components analysis (PCA), 20 principal components 
were selected for linear discriminant analysis (LDA). The number of PCs was determined by selecting the model with the lowest area under the ROC curve (AUC) 
(Supp Fig. 8 [online only]). Classification of samples into population using PCA-LDA (C) and random forest models (D), showing the percentage of samples 
classified to each group, standard error of the mean (SEM), and the percentage range across all replicates. Models were built and tested 20 times each with a 
different set of training (70%) and test (30%) data. Accuracy percentages, SEM, and range were averaged across all 20 replicates. The LDA-PCA classification 
model had a higher accuracy (87% ± 0.02) than the random forest model (82% ± 0.02), correctly assigning 87% of individuals to their respective resistance status. 
Random forest models were built using 10 PCs to obtain the highest accuracy of models tested (Supp Fig. 9 [online only]).
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differences in biochemical profile, however for groups with more 
subtle differences machine learning methods may have higher accu-
racy than LDA (Gromski et al. 2015, Gredell et al. 2019). The higher 
accuracy of the LDA model used in this study compared to the RF 
model suggests that the differences in molecular profile between the 
groups studied; geographical origin, population type, and resistance 
status may be distinct. This provides further promise for the use of 
REIMS in insecticide resistance monitoring as larger differences in 
lipid signatures are easier to detect than subtle differences. The use of 

multiple classification models to accurately classify REIMS data has 
previously been shown to be important due to the high complexity 
of REIMS data. Dimension reduction, as conducted in this study, has 
also been shown to be a critical step in REIMS data analysis (Gredell 
et al. 2019).

Whilst the REIMS method is a fast and effective method it does 
have some disadvantages when compared with alternative methods. 
The technique is destructive, meaning that the sample cannot be used 
for further analysis. However, application of the technique to adult 

Fig. 6. REIMS discrimination of field resistant and field susceptible Ae. aegypti larvae. Combined PCA-LDA separation of the resistant and field susceptible 
populations using REIMS mass spectra (A and B). Dimension reduction was conducted using principal components analysis (PCA), 20 principal components 
were selected for linear discriminant analysis (LDA). The number of PCs was determined by selecting the model with the lowest area under the ROC curve (AUC) 
(Supp Fig. 10 [online only]). Classification of samples into population using PCA-LDA (C) and random forest models (D), showing the percentage of samples 
classified to each group, standard error of the mean (SEM) and the percentage range across all replicates. Models were built and tested 20 times each with a 
different set of training (70%) and test (30%) data. Accuracy percentages, SEM, and range were averaged across all 20 replicates. The LDA-PCA classification 
model had a higher accuracy (88% ± 0.01) than the random forest model (84% ± 0.02), correctly assigning 88% of individuals to their respective resistance status. 
Random forest models were built using 20 PCs to obtain the highest accuracy of models tested (Supp Fig. 11 [online only]).
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mosquitoes provides the opportunity for partial dissection (e.g., leg 
removal) before REIMS which will allow for further genetic or bi-
ochemical testing. The mass spectroscopy equipment involved in 
REIMS is estimated to cost around US$500,000 USD (Logrono 
2020), whilst costs of the initial set up of REIMS facilities are high, 
once the equipment is available the cost per sample is low due to 
rapid sampling turnover. Costs are also saved elsewhere without 
the need for high staffing costs and insectary facilities. The speed 
at which samples can be analyzed allows for high sample turn-
over which therefore reduces cost, 100 mosquito larvae could be 
analyzed, and an answer generated in as little as 2–3 hr. In other 
applications including cancer diagnostic REIMS has been identified 
to be a more cost-effective method than other molecular techniques 
with costs around £1.60 per sample (Paraskevaidi et al. 2020). The 
REIMS method identifies differences in the lipid/metabolite profile 
of samples however specific molecule detection is not the objective 
of this method, which is designed instead to detect unique patterns in 
mass spectrum that enable classification (Wagner et al. 2020). Whilst 
we propose the use of REIMS as a potential rapid resistance iden-
tification tool with direct operational impact the technique is not 
intended to be used for identification of the mechanisms conferring 
the detected resistance.

Near-infrared spectroscopy (NIRS) is another rapid tech-
nique that has been utilized for examining invertebrates which is 
nondestructive and cost-effective (Johnson 2020). The high sensi-
tivity spectrometers required for NIRS analysis cost an estimated 
US$45,000–60,000 (Ferguson et al. 2009, Fernandes et al. 2018, 
Maia et al. 2019). The technique has been used successfully to differ-
entiate mosquito species and age (Ferguson et al. 2009; Sikulu et al. 
2010, 2011; Dowell et al. 2015; González Jiménez et al. 2019) and 
can also identify mosquitoes which are infected with arboviruses, 
Plasmodium and Wolbachia (Sikulu-Lord et al. 2016, Fernandes et 
al. 2018, Maia et al. 2019). The ability of NIRS to estimate the age 
of mosquitoes has also been applied to the detection of insecticide re-
sistance (Sikulu et al. 2014, Lambert et al. 2018), as insecticide resist-
ance has been shown to decrease with age (Lines and Nassor 1991, 
Rajatileka et al. 2011, Jones et al. 2012). However, there have been 
no studies which investigate the use of NIRS to directly measure 
insecticide resistance. The accuracy of NIRS for mosquito species de-
termination is reported to be 78–90% (Ferguson et al. 2009; Sikulu 
et al. 2010, 2011; González Jiménez et al. 2019), lower than the 
91–100% REIMS accuracy for species differentiation in Drosophila 
(Wagner et al. 2020). As NIRS has not been used to directly monitor 
insecticide resistance, comparisons between REIMS and NIRS accu-
racy for this purpose cannot be made.

This study focussed on identifying resistance to temephos how-
ever resistance to one insecticide rarely occurs in isolation. Ae. 
aegypti from both Cúcuta and Bello have previously been reported 
to have resistance to the pyrethroid permethrin and Cúcuta also 
to lambda-cyhalothrin (Granada et al. 2021). Whilst the current 
study provides proof of concept for the potential use of REIMS in 
identifying resistance, further study is needed to establish whether 
the tool can be used to differentiate between resistance to dif-
ferent insecticides, an application which could be beneficial to 
vector control programs. Knock down resistance (kdr), mutations 
in the sodium channel gene frequently associated with pyrethroid 
resistance, has also been reported in Ae. aegypti from Bello and 
Cúcuta. The varying frequencies of kdr alleles demonstrate that 
these populations are not genetically homogenous (Granada et 
al. 2021). Whilst gaining an understanding of the genetic basis of 
resistance is important (e.g., in tracking resistance and develop-
ment of new interventions) it has a little direct impact on the rapid 

decision making needed in the field (Vontas and Mavridis 2019). 
This study aims to provide a method which fulfills the need for 
more rapid resistance phenotyping tools to contribute to existing 
strategies without delving into the mechanisms contributing to this 
however there is also a further potential application of REIMS 
in investigating the genetic basis of resistance. There have also 
been reports of resistance in the absence of well-known resistance 
mechanisms likely due to unknown epigenetic changes (Oppold 
et al. 2015; Oppold and Müller 2017; Brevik et al. 2018, 2021; 
Mukherjee and Dobrindt 2022), one advantage of the REIMS 
method for resistance identification is that it is not dependant on 
prior knowledge of resistance mechanisms and therefore may be 
useful in detecting resistance that occurs in the absence of known 
resistance mechanisms.

To reduce the confounding effects of phenotypic differences 
between populations unrelated to resistance, this study used two 
different susceptible populations of Ae. aegypti, one of field or-
igin and a lab strain. Whilst this experimental design does reduce 
these confounding effects, as shown when comparing gene expres-
sion (Morgan et al. 2021), it cannot mitigate them completely and 
therefore other phenotypic differences between populations may 
be contributing to the high REIMS accuracy. This cannot be fully 
avoided when using field collected populations of mosquitoes.

Further testing is required to establish the sensitivity of REIMS 
to more granular levels of resistance, resistance in other medically 
important mosquito species, resistance to a variety of insecticides 
as well as resistance in adult mosquitoes. Determining whether the 
preservation method of mosquito samples (e.g., desiccation, storage 
temperatures, fixation) affects results also has implications for field 
application. Further studies should also be conducted using mos-
quito populations with unknown resistance statuses which would 
allow for further validation using traditional bioassay methods. The 
ability of REIMS to detect different levels of resistance and how 
the accuracy of this compares with traditional bioassay methods is 
also an important step for future research. REIMS may also benefit 
from earlier resistance detection than traditional bioassay methods 
however this requires further investigation as it was not tested in 
the current study. The results presented here identified REIMS as 
a potential and promising alternative tool for the identification of 
insecticide resistance in mosquitoes. REIMS and similar modern 
phenotyping methods, once validated, should be standardized 
and incorporated into existing insecticide resistance management 
strategies.
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Supplementary Data

Supplementary data are available at Journal of Insect Science online.
Supp File 1: R Code for analyzing REIMS data. R coding for 

analyzing REIMS data matrices, following data binning in OMB, 
using LDA and random forest classification models.

Supp Table 1: The REIMS data matrices. REIMS data following 
binning in OMB. Data organized by population type, population, 
and resistance status. Mass spectra displayed in 0.1 m/z wide bins 
from 50 to 1200 m/z.

Supp Figs. 1–11: Separation of data with random group assign-
ment (Supp Fig. 1 [online only]). LDA and RF validation plots (Supp 
Figs. 2–11 [online only]).
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